

SailPoint IdentityIQ
 Version 8.1

System Administration
Guide

This document and the information contained herein is SailPoint Confidential Information.

Copyright and Trademark Notices.

Copyright © 2020 SailPoint Technologies, Inc. All Rights Reserved.

All logos, text, content, including underlying HTML code, designs, and graphics used and/or depicted on these written
materials or in this Internet website are protected under United States and international copyright and trademark
laws and treaties, and may not be used or reproduced without the prior express written permission of SailPoint
Technologies, Inc.

“SailPoint,” “SailPoint & Design,” “SailPoint Technologies & Design,” “AccessIQ,” “Identity Cube,” “Identity IQ,”
“IdentityAI,” “IdentityNow,” “Managing the Business of Identity,” and “SecurityIQ” are registered trademarks of
SailPoint Technologies, Inc. None of the foregoing marks may be used without the prior express written permission
of SailPoint Technologies, Inc. All other trademarks shown herein are owned by the respective companies or persons
indicated.

SailPoint Technologies, Inc. makes no warranty of any kind with regard to this manual or the information included
therein, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
SailPoint Technologies shall not be liable for errors contained herein or direct, indirect, special, incidental or
consequential damages in connection with the furnishing, performance, or use of this material.

Patents Notice. https://www.sailpoint.com/patents

Restricted Rights Legend. All rights are reserved. No part of this document may be published, distributed,
reproduced, publicly displayed, used to create derivative works, or translated to another language, without the prior
written consent of SailPoint Technologies. The information contained in this document is subject to change without
notice.

Use, duplication or disclosure by the U.S. Government is subject to restrictions as set forth in subparagraph (c) (1) (ii)
of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 for DOD agencies, and
subparagraphs (c)(1) and (c)(2) of the Commercial Computer Software Restricted Rights clause at FAR 52.227-19 for
other agencies.

Regulatory/Export Compliance. The export and re-export of this software is controlled for export purposes by the
U.S. Government. By accepting this software and/or documentation, licensee agrees to comply with all U.S. and
foreign export laws and regulations as they relate to software and related documentation. Licensee will not export
or re-export outside the United States software or documentation, whether directly or indirectly, to any Prohibited
Party and will not cause, approve or otherwise intentionally facilitate others in so doing. A Prohibited Party includes:
a party in a U.S. embargoed country or country the United States has named as a supporter of international terrorism;
a party involved in proliferation; a party identified by the U.S. Government as a Denied Party; a party named on the
U.S. Department of Commerce’s Entity List in Supplement No. 4 to 15 C.F.R. § 744; a party prohibited from
participation in export or re-export transactions by a U.S. Government General Order; a party listed by the U.S.
Government’s Office of Foreign Assets Control as ineligible to participate in transactions subject to U.S. jurisdiction;
or any party that licensee knows or has reason to know has violated or plans to violate U.S. or foreign export laws or
regulations. Licensee shall ensure that each of its software users complies with U.S. and foreign export laws and
regulations as they relate to software and related documentation.

Table	of	Contents
IdentityIQ Introduction 1

Chapter	1		Provisioning	with	IdentityIQ	 3
Recording Provisioning Requests . 4

Certifications .4
Policy Violations .5
Identity-Refresh-Driven Assignments .5
Lifecycle Manager Requests .6
Lifecycle Event-Driven Provisioning .8
Other Identity Cube Modifications .10

Processing Provisioning Requests . 10
 Involvement .11
Overview of Provisioning Process .12
Compiling the Plan .12
Answering Provisioning Policy Questions .15
Implementing the Plan .16

Updating the Identity Cube . 18
Identity Refresh .19
Special Case: Optimistic Provisioning .19

Summary of Workflows, Tasks, and Rules in Provisioning . 20

Chapter	2	Forms	23
Specifying Custom Forms . 23

Role/Application Provisioning Policies .23
Identity Provisioning Policy .25
Workflow Forms .25
Report Forms .27

Components of a Form Definition . 27
Form .28
Attributes .28
Buttons .29
Sections .29
Fields .30

Working with the Form Editor . 41
Detail View .41
Expandable Tree .41
Edit Options .42

Form Examples . 45
Application and Role Provisioning Policy .45
Identity Provisioning Policy .46
Workflow Form .49
Report Forms .51

Form Models . 52
Identity Model Structure .54
Accessing Identity Model Attributes .54
Referencing a Form Model .55

Chapter	3	Configure	Risk	Scoring	 57
Identity Risk Score Configuration . 57

Identity Baseline Access Risk Tab .58
Identity Composite Scoring Tab .60

Application Risk Score Configuration . 61
Application Component Scores Tab .62
Application Composite Score Tab .62

Chapter	4	Partitioning	63
Configuring Partitioning Request Objects . 63

Chapter	5	Tasks	 65
Tasks Page . 65

Predefined Tasks .66
Working with Tasks . 68

How to Create a New Task .68
How to Edit a Task .70
How to Schedule a Task .71

Scheduled Tasks . 72
Working with Schedules . 73

How to Edit a Schedule .73
Task Results . 73
Task Types . 75

Account Aggregation .78
Account Group Aggregation .81
Activity Aggregation .81
Alert Aggregation .82
Alert Processor .83
Classification .83
Data Export .84
Effective Access Indexing .84
Application Builder .85
ArcSight Data Export .87
Encrypted Data Synchronization Task .90
Entitlement Role Generator .90
FIM Application Creator .91
IQService Public Key Exchange .92
ITIM Application Creator .92
IdentityIQ Cloud Gateway Synchronization .93
Identity Refresh .93
Identity Request Maintenance .97
Missing Managed Entitlements Scan .98
Novell Application Creator .98
OIM Application Creator .99
Policy Scan .99
Propagate Role Changes .100
Refresh Logical Accounts .101
Role Index Refresh .102
Run Rule .102
Sequential Task Launcher .102
System Maintenance .103
Target Aggregation .103

How to Complete Task Work Items .104

Chapter	6	Alerts	 	105
Alerts Page .105
Alert Definitions Page .106
Create Alert Definition .106

How to Create an Alert Definition .107
Edit Alert Definitions .107

How to Edit an Alert Definition .108
How to Filter Alerts .108

Chapter	7	Work	Items	 	109
Work Item Administration .109

Work Item Archive .110

Chapter	8	IdentityIQ	Console	 	111
Launching the Console .111
Viewing the List of Commands .111
Command-Line Parameters .115
Command Syntax .115

Syntax for Redirecting Command Output .116
Console Commands .117

Commonly Used Commands .117
Less Commonly Used Commands .122
Seldom Used Commands .131

Chapter	9	Classifications		145
Where Classification Data Comes From .145

File Access Manager Classifications .145
Classifications from Other Sources .145

Working With Classification Data in IdentityIQ .146
Lifecycle Manager: Access Requests and Approvals .146
Adding Classifications to Roles and Entitlements .147
Classifications in Certifications and Access Reviews .147
Classifications in Policies and Policy Violations .148
Classifications in Advanced Analytics .148
Classifications in the Identity Warehouse .149
Classifications in the Edit/View Identity Page .149

Integrating with File Access Manager for Classifications .149
File Access Manager Classification Processes .150

Chapter	10	Using	the	Administrator	Console		153
Manage Task Results .153

Active Tab .153
Scheduled Tab .153
Complete Tab .154

Manage Provisioning Transaction Results .154
Monitoring Your Environment .155

Hosts .155
Applications .156
SailPoint Modules and Extensions .156

Section	I:	Managing	Business	Processes		157

Chapter	11	Business	Process	Management		159

Chapter	12	Workflow	Basics		161
Terminology .161
Important Workflow Objects .161
Workflows Operation .161

Provisioning Plans in Workflows .162
Triggering Workflows .162
IdentityIQ Default Workflows .163

Workflow Types .163

Chapter	13	Using	the	Business	Process	Editor	with	Workflows		167
Creating and Editing Workflows .167

Basic Workflow How-To Tasks .167
Process Editor Tabs .168

Process Details Tab .168
Process Variables Tab .170
Process Designer Tab .171
Process Metrics Tab .181

Chapter	14	Editing	Workflow	XML	 	183
Accessing the XML .183

Debug Pages .183
IdentityIQ Console .183
Re-importing the XML .184

Dollar-Sign Reference Syntax .184
XML Content .184

Header Elements .184
Workflow Element .185
Variable Definitions .185
Workflow Description .189
Rule Libraries .189
Step Libraries .189
Step Elements .191
Approval Steps .200

Workflow Library Methods .206
Standard Workflow Handler .207
Identity Library .209
IdentityRequest Library .214
Approval Library .215
Policy Violation Library .216
Role Library .217
LCM Library .218

Monitoring Workflows .219
Viewing the Workflow Case XML .219

Chapter	15	Advanced	Workflow	Topics	 	221
Loops within Workflows .221
Launching Workflows from a Task or Workflow .221

Workflows Launched from Custom Tasks .221
Workflows Launched by Other Workflows .223

Workflow Forms .224
Process Variable and Step Forms .224

Section	II:	Managing	Reports	227

Chapter	16	Reports	Introduction	229
Report Terminology .229

Chapter	17	Report	Use	and	Customization	 	231
Reports Tab .231
Edit Report Page .232

Standard Properties .232
Report Layout .233
Report-Specific Parameters .234
Saving and Executing Report Instances .234

My Reports Tab .235
Scheduled Reports Tab .235
Report Results Tab .235
XML Representation of Reports and Instances .236

Chapter	18	Developing	Custom	Reports		237
Report as a TaskDefinition .237

Elements within TaskDefinition .238
Report Definition .241

ReportForm: Collecting Report-Specific Parameters .242
DataSource: Retrieving Report Data .244
Columns/ReportColumnConfig: Report Grid Presentation .252
Initialization Script or Rule .255
Extended Column Script or Rule .258
Validation Script or Rule .259
Chart: Report Graph .265

Report Forms .267

Chapter	19	Reports	DataSource	Example	271

Section	III:	Managing	Passwords		277

Chapter	20	Introduction	to	Password	Management	 	279

Chapter	21	Application	Password	Management	 	281
Enabling Password Management in IdentityIQ .281

Defining Special Characters Available Password Use .281
Configuring Applications for Password Management .282
Configuring Password Policies for an Application .282

Defining a Password Policy .282
Policy Re-Use .284
Password Validation Process .285

Application Change Password Provisioning Policy .285
Requesting a Password Change .285

Self-Service Requests .285
Requests for Others .286
LCM Manage Passwords Workflow .287

Passwords on New Account Requests .288
Troubleshooting Password Management with Provisioning Plan Debugging .288

Chapter	22	IdentityIQ	Password	Management	291
IdentityIQ Password Configuration .291

IdentityIQ Password Policy .291
Defining Special Characters for Password Use .292
Resetting IdentityIQ Internal Passwords .293

Self-Service Password Reset .293
Password Resets for Others .293
Password Expiration Resets .293

Password Management with Pass-Through Authentication .294
Defining the Security Questions .294
Configuring the Security Question Settings .294
Security Questions .294
Recording Security Answers .295

Chapter	23	Application-Specific	Password	Management	Requirements		297
Active Directory and ADAM: SSL .297

SSL Configuration for the Direct Connector .297
Windows Local and Active Directory: IQService Agent .298
Windows Desktop Password Reset Utility .298

IdentityIQ	Introduction
SailPoint IdentityIQ is an identity and access management solution for enterprise customers that delivers a wide
variety of IAM processes-including automated access certifications, policy management, access request and
provisioning, password management, and identity intelligence. Furthermore, IdentityIQ has a flexible
connectivity model that simplifies the management of applications running in the datacenter or the cloud.

Compliance Manager — IdentityIQ Compliance Manager automates access certifications, policy management,
and audit reporting through a unified governance framework. This enables you to streamline compliance
processes and improve the effectiveness of identity governance, all while lowering costs.

Lifecycle Manager — IdentityIQ Lifecycle Manager manages changes to access through user-friendly self-service
request and password management interfaces and automated lifecycle events. It provides a flexible, scalable
provisioning solution for addressing the constantly evolving access needs of your business in a way that's both
efficient and compliant.

IdentityAI – Integrating IdentityAI within IdentityIQ enables the delivery of Predictive Identity. IdentityAI is a rule
based machine learning engine using identity graph technology to provide recommendations for access review
and access request decisions. With IdentityAI enabled, you can also review access history for identity cubes,
create dashboards that can be customized from an administrative perspective, and view peer groups within the
IdentityAI user interface.

Privileged Account Management Module — IdentityIQ Privileged Account Management module provides a
standardized approach for extending critical identity governance processes and controls to highly privileged
accounts, enabling IdentityIQ to be used as a central platform to govern standard and privileged accounts.

Connectors and Integration Modules — IdentityIQ offers Integration Modules that support the extended
enterprise IT infrastructure. Third party provisioning and service desk integration enable multiple sources of
fulfillment to access change. Service catalog integration supports a unified service request experience with
integrated governance and fulfillment. Mobile device management integration mitigates risk posed by mobile
devices through centralized visibility, control and automation. And IdentityIQ’s IT security integration provides
enhanced security with improved responsiveness and controls.

Open Identity Platform — SailPoint’s Open Identity Platform lays the foundation for effective and scalable IAM
within the enterprise. It establishes a common framework that centralizes identity data, captures business policy,
models roles, and takes a risk-based, proactive approach to managing users and resources. The Open Identity
Platform is fully extensible, providing robust analytics which transforms disparate and technical identity data into
relevant business information, resource connectivity that allows organizations to directly connect IdentityIQ to
applications running in the datacenter or in the cloud, and APIs and a plugin framework to allow customers and
partners to extend IdentityIQ to meet a wide array of needs. An open platform allows organizations to build a
single preventive and detective control model that supports all identity business processes, across all
applications-in the datacenter and the cloud. SailPoint IdentityIQ applies consistent governance across
compliance, provisioning and access management processes, maximizing investment and eliminating the need to
buy and integrate multiple products.

Password Manager — IdentityIQ Password Manager delivers a simple-to-use solution for managing user
passwords across cloud and on-premises applications policies from any desktop browser or mobile device. By
providing intuitive self-service and delegated administration options to manage passwords while enforcing
enterprise-grade password, IdentityIQ enables businesses to reduce operational costs and boost productivity.

Amazon Web Services (AWS) Governance Module — Enables organizations to extend existing identity lifecycle
and compliance management capabilities within IdentityIQ to mission-critical AWS IaaS environments to provide
a central point of visibility, administration, and governance across the entire enterprise. This includes policy
SailPoint IdentityIQ System Administration Guide 1

discovery and access history across all organization accounts, provisioning AWS entities and objects, access
review and certification, and federated access support.

SAP Governance Module — Improves the user experience by introducing a new integrated visual interface for
navigating and selecting SAP identities and roles as part of IdentityIQ lifecycle management and compliance
solution. SAP data is presented in a familiar hierarchy format that closely represents deployed system resources
and organizational structures. New filtering capabilities enable more efficient browsing and selection of SAP data
so tasks can be performed faster. Improved granular support for separation of duty (SOD) violation policies
provides flexibility for customers to craft more detailed identity governance policies that include SAP role details
such as T-Codes and Authorization Objects.
2 SailPoint IdentityIQ System Administration Guide

Chapter	1:		Provisioning	with	
IdentityIQ

The IdentityIQ provisioning capabilities help companies manage system access for their personnel. Provisioning
requests can be created and processed in several ways in IdentityIQ, based on the needs and configuration of the
installation. In many cases, modifications to access or entitlements you request in IdentityIQ can be automatically
reflected in the associated native applications.

This chapter traces the flow of the provisioning plan through its evaluation and preparation for processing into
the appropriate native system. Included throughout are the IdentityIQ tasks, business processes and rules that
operate on the data as it moves through the process.

Note: Business processes are often referred to as workflows.

At a high level, provisioning requests are processed as follows:

• The provisioning request is made through one of several actions or activities.

• The request is created as a provisioning plan.

• The Provisioning Broker evaluates and compiles the provisioning plan, which often involves dividing the
original plan into several partitioned plans. Each partitioned plan addresses a single application.

• Each partitioned provisioning plan is passed to the appropriate handler.

- For integration configuration or read-write connectors, the change is written to the destination
system.

- For Work Items, a work item is created and assigned to an identity who must for manually process
the request into the target system.

• The provisioning actions are confirmed and marked on the identity cube, based on the mechanisms
involved.

Use the Administrator Console link, under the gear icon, to access the Provisioning Transactions table to view the
status of all provisioning transactions in your implementation of IdentityIQ; connectors, manual work items, and
IdentityIQ operations. “Using the Administrator Console” on page 153.

Access to the Provisioning Transaction table is controlled with IdentityIQ rights.
SailPoint IdentityIQ System Administration Guide 3

Recording Provisioning Requests
This chapter has the following sections:

• “Recording Provisioning Requests” on page 4

• “Processing Provisioning Requests” on page 10

• “Manage Provisioning Transaction Results” on page 154

• “Updating the Identity Cube” on page 18

• “Summary of Workflows, Tasks, and Rules in Provisioning” on page 20

Recording	Provisioning	Requests

You can create provisioning requests in IdentityIQ using any of the following actions or activities:

• “Certifications” on page 4

• “Policy Violations” on page 5

• "Identity-Refresh-Driven Assignments" on page 5

• “Lifecycle Manager Requests” on page 6

• “Lifecycle Event-Driven Provisioning” on page 8

• “Lifecycle Event-Driven Provisioning” on page 8

Provisioning requests create a provisioning plan that the Provision Broker can analyze and process. In all cases,
except certification and policy violation-generated requests, provisioning requests create a Workflow case. The
Workflow case manages the processing of the provisioning request based on a defined Workflow. See also
“Processing Provisioning Requests” on page 10.

Certifications

During a Certification Access Review, certifiers review the system entitlements granted to sets of identities.
Access can be approved or revoked for an identity. This certification process can result in:

• Certificate Remediation — When an identity’s access to a system is determined to be inappropriate for
their job function, the certifier can revoke the entitlement through the Certification Access Review. This
process creates a remediation provisioning request in IdentityIQ to remove that access from the source
application.

• Provisioning through Certifications — When a business role is approved for an identity and that role
includes required IT roles the identity does not have, the certifier is prompted to select whether the
missing roles must be provisioned for the identity or whether the business role must be approved
without provisioning the missing roles. If the certifier elects to provision the missing roles, a provisioning
request is created.

Note: This provisioning option is only presented during the Access Review if the option Enable
Provisioning of Missing Role Requirements is selected in the certification specification.

All revocations and provisioning requests from a specific access review are combined into a
single provisioning plan and processed together except in certifications where revocations are
processed immediately, such as certifications with the Process Revokes Immediately setting
selected.
4 SailPoint IdentityIQ System Administration Guide

Recording Provisioning Requests
Policy	Violations

Policies defined in IdentityIQ enable the system to evaluate an identity’s access or activities and report any
inconsistencies with company policies. Violations are reported to the violation owner, often the identity’s
manager, or the appropriate application owner. The violation owner can then permit an exception or initiate a
remediation request. The following types of policy violation remediations are available:

• "Policy Violation Remediations for SOD Policy Violations" on page 5

• "Policy Violation Remediations for Non-SOD Policy Violations" on page 5

Policy	Violation	Remediations	for	SOD	Policy	Violations

Only remediations for role or entitlement Separation of Duties (SOD) violations generate a provisioning request
to revoke the invalid access. For example, when a manager evaluates an identity’s SOD violations and determines
that one of the accesses for the identity must be removed, the manager can request the revocation of the invalid
access.

You can create policy violation remediation requests from:

• Policy owner’s Policy Violation page that you can from Manage -> Policy Violations page.

• Certification on which the violation is noted.

Policy	Violation	Remediations	for	Non-SOD	Policy	Violations	

Note: By default, you cannot remediate non-SOD policy violations with a certification or in the policy
violation window.

You can perform the following actions to enable certification remediate and generate a Work Item:

1. Edit the XML for any policy to include remediated as one of its certificationActions values to enable
certification remediation on that policy type.

2. Select the remediation option for the violation in a certification to automatically create a Work Item that
informs the appropriate party of the need to manually correct the violation.

Identity-Refresh-Driven	Assignments

You can use the following options on an Identity Refresh task to generate provisioning requests for identities:

• Refresh assigned, detected roles and promote additional entitlements — Creates provisioning requests
for IdentityIQ to add roles to identity cubes.

• Provision assignments — Creates provisioning requests that apply to external applications.

The following table describes these options in more detail:

Option Description

Refresh assigned, detected roles and
promote additional entitlements

Runs the defined assignment rules for roles and examines
role detection profiles to update the Assigned and Detected
role lists for the identity.

Note: This option does NOT provision access in external
system
SailPoint IdentityIQ System Administration Guide 5

Recording Provisioning Requests
Note: By default, the entitlements associated with a role are de-provisioned when the role is
removed from an identity. The Disable deprovisioning of deassigned roles option overrides that
default and leaves the entitlements intact for the identity while the role is removed.

Lifecycle	Manager	Requests

Lifecycle Manager is a separately licensed portion of the IdentityIQ product that is designed to manage
entitlements using provisioning requests. Based on their manager status and how the Lifecycle Manager is
configured, users can make requests for themselves or for other identities.

In a typical configuration:

• Managers can make requests for their direct reports.

• Help desk users can make requests for themselves and others.

• Any user can make requests for themselves.

Lifecycle	Manager	Toolbar

When Lifecycle Manager is enabled, the Lifecycle Manager toolbar displays at the top of the IdentityIQ view and
supports the following actions:

• “Request Access” on page 7

• "Manage Accounts" on page 7

• "Other Lifecycle Manager Options" on page 8

Note: The set of identities for which these actions can be taken is based on the individual user’s
authority and the Lifecycle Manager configuration. The self-service, Request For Me, options
do not include Create Identity.

 Provision assigned roles Generates provisioning requests to add entitlements
required by the currently assigned roles, which can include:
 - Entitlements for newly assigned roles
 - Entitlements missing from previously assigned roles.

Note: If a role was previously assigned through an
automatic assignment rule and the rule no longer returns
true, provisioning requests are generated to remove the
entitlements that the role requires. If another assigned
role requires those entitlements, they are not removed.

Option Description
6 SailPoint IdentityIQ System Administration Guide

Recording Provisioning Requests
Request	Access

 Request Access includes Role and Entitlement requests. If you are working with a single user, a third tab, Current
Access displays that you can use to request the removal of Roles or Entitlements. Use the Lifecycle Manager
Request Roles feature to generate requests that:

• Add the appropriate role to the specified identities.

• Provision the entitlements the role requires.

• Provision permitted roles, if added to the request when prompted.

• De-provision by removing roles from an identity
 This option generates a provisioning request to remove the role assignment from the identities and the
entitlements the role requires if another role does not need the entitlements.

Use the Lifecycle Manager Request Entitlements feature to generate requests to:

• Add the entitlement to the specified identity.

• Revoke an identity’s current entitlements.
This option generates a provisioning request that removes the access from the source application or
applications.

By default, when you request a new entitlement on an application and the user already has an account on that
application, the entitlement is added to the existing account. If needed, you can create a separate account for
specific entitlements.

To create multiple accounts for a single identity on an application or to add an entitlement to a specific existing
account when several are available:

1. Navigate to the Lifecycle Manager configuration Additional Options page.

2. In the General Options section, select an application included in the list for Applications that support
additional account requests.

3. For the Account selection, select the option to create a new account or the option to add the entitlement
to an existing account that the identity already has.

Manage	Accounts	

Use the Manage Accounts feature to:

• Request accounts on additional applications — generates provisioning requests.

• Revoke or disable existing accounts — generates provisioning requests.

• Enable disabled accounts — generates provisioning requests to enable or disable accounts.

• Unlock locked accounts — generates provisioning request.

To use the Manage Accounts to request a new account:

1. Navigate to the Lifecycle Manager configuration Additional Options page.

2. In the Manage Accounts Options section, select an application included in the list of applications that
support account-only requests.

3. For the Account selection, select the option to create a new account or the option to add the entitlement
to an existing account held by the identity.

Note: You can also select the Manage Accounts option on the Lifecycle Options page for any group,
they can enable, disable, and delete accounts for the existing accounts. The connector must
support this action and the action must not be disabled through another setting on the
Additional Options page.
SailPoint IdentityIQ System Administration Guide 7

Recording Provisioning Requests
Other	Lifecycle	Manager	Options

Other Lifecycle Manager options include the following items:

• Create Identity — Creates provisioning plans that update IdentityIQ. You can create a new IdentityIQ
identity with a set of attributes that can be configured. The attributes that you can set or change are
defined by a form that can be customized. New identities do not have accounts on any application.

• Edit Identity — Creates provisioning plans that update IdentityIQ. You can modify attributes for an
existing IdentityIQ identity. The attributes that you can set or change are defined by a form that can be
customized.

Note: Life Cycle Events can cause provisioning outside of IdentityIQ or additional provisioning inside
IdentityIQ. In addition. Attribute sync can also cause provisioning outside of IdentityIQ based
on create or edit identity.

• Manage Passwords —Resets passwords on target systems which involves a provisioning plan and
provisioning action.

• View Identities — Does not have provisioning-related functionality and is read-only.

Lifecycle	Event-Driven	Provisioning	

With Lifecycle Manager enabled, Lifecycle Events can be configured in IdentityIQ to represent activities that occur
during the normal course of a person’s employment at a company. These activities include events such as joining
the company, changing departments or managers, and leaving the company. The shorthand terms for these
activities are Joiner, Mover and Leaver.

When Lifecycle Manager is enabled, IdentityIQ contains four pre-defined Lifecycle Events.

By default, these events are disabled and must be enabled before the events can be triggered. Lifecycle Events
are triggered by specific changes to an identity. These changes can include the following actions:

• Creation

• Manager transfer

• Attribute change

• Complex changes that an IdentityTrigger rule detects

The triggered Lifecycle Events invoke business processes, or workflows, that can contain provisioning actions.

Note: The terms Business Process and Workflow are synonymous. The IdentityIQ user interface refers
to these terms as Business Processes which is the term business managers use most often. The
IdentityIQ object model and XML use the term Workflows.

Lifecycle Event Trigger Business Process Invoked

Joiner Identity Creation Lifecycle Event – Joiner

Leaver Attribute Change: Inactive attribute
change from false to true

Lifecycle Event – Leaver

Manager Transfer Manager Change Lifecycle Event – Manager Transfer

Reinstate Attribute Change: Inactive attribute
change from true to false

Lifecycle Event – Reinstate
8 SailPoint IdentityIQ System Administration Guide

Recording Provisioning Requests
Manage	Lifecycle	Events	and	Actions	

The Lifecycle Events and the default actions of each of the business process that the pre-defined Lifecycle Events
invoke are listed below.

• Lifecycle Event – Joiner — Prints the name of the identity to sysout. No actions are taken on the identity.
This action is typically modified to provision birthright access for identities.

• Lifecycle Event – Leaver — Creates and runs a provisioning plan to disable all accounts the leaving
identity has.

• Lifecycle Event – Manager Transfer — Prints names of the old and new manager to sysout. No actions
are taken on identity or entitlements. This action is typically modified to generate a certification for the
new manager to review the access an identity holds. This action can also be used to provision birthright
access identified for members of new manager’s group.

• Lifecycle Event – Reinstate — Creates and runs a provisioning plan to enable all previously disabled
accounts that a returning identity had.

Lifecycle	Events	and	Actions	How-To	Tasks

You can perform the following tasks for Lifecycle events and actions:

• “How To Edit Pre-defined Lifecycle Events” on page 9

• “How To Create a New a Lifecycle Event” on page 9

• “How To Delete a Lifecycle Event” on page 9

Note: Additional Lifecycle Events and workflows/business processes can be created as needed to
support the business needs for each installation.

How	To	Edit	Pre-defined	Lifecycle	Events

1. Navigate to Setup -> Lifecycle Events page.

2. Right-click an entry and click Edit or double click an entry.

3. Make desired changes and click Save.

How	To	Create	a	New	a	Lifecycle	Event

1. Navigate to Setup > Lifecycle Events page.

2. Click Add New Lifecycle Event.

3. Enter information for Lifecycle Event Options and Behavior.

4. Click Save.

How	To	Delete	a	Lifecycle	Event

1. Navigate to Setup > Lifecycle Events page.

2. Right-click an entry and select Delete.

How	To	Modify	Actions	for	Lifecycle	Events

1. Navigate to Navigate to Setup -> Business Process page.

2. Select the Process Designer tab.

3. Select a process from the Edit An Existing Process list
SailPoint IdentityIQ System Administration Guide 9

Processing Provisioning Requests
Note: Typically only administrators can edit the identity cube information. This option is available
through the Identities > Identities Warehouse.

You can also access IdentityIQ Debug pages and modify actions through the XML Workflow.

See also "Business Process Management" on page 159.

Other	Identity	Cube	Modifications

In addition to the Lifecycle Manager pages, users with the right capabilities can access an administrative interface
to make additional identity modifications. Navigate to the Identities > Identities Warehouse page.

Most of the information is read-only, but a provisioning plan is generated that updates an identity when you:

• Edit attribute values on the Attributes tab.

• Delete or Move account links from the Application Accounts tab.

• Change capabilities or assigned scopes on the User Rights tab.

If the triggering attributes for the identity have not changed, deleted roles that were assigned by rules are
automatically re-assigned to the identity during the next identity refresh. The re-assignment is also processed as
an identity-refresh-driven provisioning request.

Processing	Provisioning	Requests

IdentityIQ creates a master provisioning plan for the requested actions when a provisioning request is submitted
from a provisioning request source. A workflow case is also created to manage and track the progress of the
provisioning activity. The workflow case contains the workflow that specifies the process to follow.

Note: Certification and policy violation based provisioning does not use workflows.

IdentityIQ ships with pre-defined workflows or business processes which can be customized for each installation
as needed. The workflow case created for each provisioning request is associated with the appropriate workflow
for the event that generated the request. The following table lists the Workflows that drive the provisioning
process from each request source.

Provisioning Request Source Workflow Invoked

Lifecycle Manager Main workflows include: LCM Create and Update, LCM
Manage Password, LCM Registration and LCM
Provisioning

Identity Refresh Identity Refresh

Define Identities Identity Update

Lifecycle Events Each event is managed by the business process listed in
Business Process field on the Lifecycle Event definition
window.
10 SailPoint IdentityIQ System Administration Guide

Processing Provisioning Requests
	Involvement

The Perform Maintenance task processes all certification remediation including: roles entitlements and policy
violations. This task invokes the Remediation Manager to process the remediation requests.

For certifications with specifications that include the Process Revokes Immediately option, the
Certificationer object invokes the Remediation Manager directly to process the remediation requests. The
basic logic of the provisioning process remains the same. The Remediation Manager uses the same mechanisms
that the workflows use to complete the requests.

Remediation tasks that are performed on the Policy Violations page are not a part of these maintenance task
processes.

Note: Requests on a certification for provision-missing-required-roles are not remediation items.
These requests are added to the same provisioning plan as additional actions. The process that
manages remediation items also manages these requests.

Certification Remediations / Provisioning None

Managed by and RemediationManager class.

Note: If the certification specifies Process Revokes
Immediately, certification starts the remediation
process directly.

Policy Violation Remediations None

Policy violations remediations that certifications create
are managed the same as any other certification
remediation.

Policy violations remediated from Policy Violations page
are saved directly to the violation table.

Provisioning Request Source Workflow Invoked
SailPoint IdentityIQ System Administration Guide 11

Processing Provisioning Requests
Overview	of	Provisioning	Process

The Provisioning Process has three phases:

• “Compiling the Plan” on page 12 — Analysis and preparation of the plan for processing

• “Answering Provisioning Policy Questions” on page 15 — Request of missing required data from a user

• “Implementing the Plan” on page 16 — Submittal of the plan to the appropriate connector to provision
the requested access

Compiling	the	Plan

The Plan Compiler is responsible for the following tasks:

• “Create the Provisioning Project” on page 12 — This task begins with the provisioning plan.

• “Evaluate and Expand Roles” on page 12 — Roles are expanded into entitlement requests.

• “Apply Provisioning Policies” on page 13 — This task a applies the policy which contains list of fields with
names that correspond to an application account attribute name the role uses.

• “Identify Questions” on page 15 — This task identifies any missing information for the requests.

• “Filter and Check Dependencies” on page 15 — These tasks streamline the provisioning process and
prevent unintended consequences of the requests.

• “Partition the Plan” on page 15 — This task divides the provisioning plan into smaller plans.

Create	the	Provisioning	Project

The provisioning project begins with the provisioning plan. As roles are expanded into entitlement requests,
missing information for the requests is identified and the plan is divided into smaller plans. The provisioning
project serves as a container for all the smaller plans and includes the following items:

• Original (or master) provisioning plan.

• A set of partitioned plans that contain requests for a single connector.

• An unmanaged plan that contains requests that cannot be processed by any connectors. Items in this
plan can be converted to manual work items.

Note: Partitioned plans contains the actions necessary to fulfill the master plan. For example, a single
role assignment in the master plan can expand into many entitlement requests in the
partitioned plans.

Evaluate	and	Expand	Roles

The master plan is evaluated for any role assignments. If the plan contains role assignments, those roles must
be expanded. The role expansion process:

• Identifies IT roles that an assigned business role needs.

• Determines what specific entitlements the IT role needs.

• Adds the entitlements to the lists of account/attribute/permission request for the provisioning project.
Each attribute is represented as an Attribute Request or a Permission Request.

For example, Business Role X is added to an identity. Business Role X requires IT Role A which has entitlements
associated with its role. The Plan Complier determines that IT Role A is required, identifies the necessary
entitlements, and adds the entitlements to the project.

Note: After role expansion is complete, IT Role A does not display in the project. Only the raw
entitlements that the IT role A needs are listed.
12 SailPoint IdentityIQ System Administration Guide

Processing Provisioning Requests
Apply	Provisioning	Policies

A provisioning policy is a list of fields with names that correspond to an application account attribute name the
role uses. Provisioning Policies can be used to help complete an access request that has unknown data required
for provisioning. When a provisioning request requires additional information to complete the access request,
you can apply a provisioning policy specified for the application involved. Examples of additional or unknown
data that is required for provisioning include the following items:

• Information that is not provided in the original request, such as missing information for a new account
or missing information for an additional required role.

• Multiple possible values for a required field.

Types of Provisioning Policies include:

• “Role Provisioning Policies” on page 13 — Removes role uncertainty.

• “Application Provisioning Policies” on page 14 — Applied when a new account is requested.

Role	Provisioning	Policies

The primary purpose of provisioning policies on roles is to remove any uncertainty for the role. In some cases,
examining the role profile can determine the set of entitlements to be provisioned for an IT role. Role profiles can
be clear or unclear. When all the role profile terms are joined using AND statements, the profile is clear. IdentityIQ
can easily analyze the role profile and provision entitlements that match the profile.

For example, A profile that includes a list of OR terms is unclear, because two or more different memberOf values
can satisfy the role. The following table provides examples.

Note: Fields can also be assigned scripts or rules that enable the appropriate value to be calculated
instead of using a hard-coded value.

Role Profile Example Terms Type of Terms Explanation

location='Austin' and
memberOf='Engineering'

Profile with a list of AND terms To satisfy this role, the identity
must have both of these account
attributes. Requests for those
two attributes are added to the
plan.

memberOf='Engineering' OR
memberOf='Sales’

Profile with a list of OR terms The default provisioning behavior
for profiles containing OR terms is
to provision only the first one. In
this case,
memberOf='Engineering' is
added to the plan but not
memberOf='Sales'.

Note: If the organization wants
memberOf='Sales’ provisioned
for new role members, a
provisioning policy can be
defined with one field named
memberOf with the field value
Sales.
SailPoint IdentityIQ System Administration Guide 13

Processing Provisioning Requests
Application	Provisioning	Policies

Provisioning Policies can also be specified for applications. These policies are applied when a new account is
requested on an application. Application Provisioning Policies are similar to Role Provision Policies and can
specify the field values as literal values or through a script or rule. The following actions trigger application
provisioning policies:

• Create Account

• Update Account

• Delete Account

• Enable Account

• Disable Account

• Unlock Account

• Change Password

• Create <object type>

• Update <object type>

Application	Dependency

You can specify an application dependency at the field level when you create a policy. Application dependency
works with synchronous connectors and does not work with connectors that queue plans. Application
dependencies are enforced during Create operations. For update and delete, the dependencies are ignored.

Note: IdentityIQ does not undo dependencies during de-provisioning.

To specify an application dependency:

1. Navigate to Applications -> Application Definition. On the Provisioning Policies tab of the Application
Configuration page select the dependent application for the provisioning.

2. Double-click or right-click the application in the Application List.

3. On the Application Configuration page, select the Provisioning Policies tab.

4. Define the application dependency at the field level in the Create Account and Create Group policies.

Application dependency works similar to roles and entitlements. If a dependency is missing, IdentityIQ expands
it and executes a Create request for the dependency. If the user has an existing link on a dependent application,
IdentityIQ uses the existing link information to derive the value. When there are multiple accounts on the link,
the applicable accounts are selected automatically using rules or through an interactive user interface. Selecting
an account can be an option to create a new account.

The available attributes are derived from the account schema of all dependent applications. During plan
compilation, IdentityIQ reads these properties and determines any new accounts that are required to satisfy the
dependency.

During Plan Evaluation, IdentityIQ uses the dependency settings to determine the order that must be used to
implement the plan. If a dependency plan fails, all of the dependent plans also fail. If a dependency plan requires
a retry, after the retry is successfully completed, the dependent plans are executed. There is special new logic in
the Provision with Retries method that loops back to the provisioning step when there are still plans to complete.

There are not transformations (rules) on dependent fields. The evaluation process copies the exact values from
the dependency plan or link to the dependent plan.
14 SailPoint IdentityIQ System Administration Guide

Processing Provisioning Requests
Identify	Questions

After the provisioning policies are applied, pieces of data can still be missing. Some provisioning policies are
specifically written so the data must be obtained from a person when the role or application account is
requested. These missing data elements are recorded as questions on the provisioning project. These questions
are presented to a person who must provide the information necessary to complete the provision request. See
“Answering Provisioning Policy Questions” on page 15.

Filter	and	Check	Dependencies

Filter and Check Dependencies streamline the provisioning process and prevent unintended consequences of the
requests. During this step of the compilation process:

• The current state of the identity is examined.

• Any entitlements requested in the plan that already exist for the identity are removed from the plan.

• Entitlements that are to be removed, based on a role removal, are examined. This step determines if the
identity has another role that requires the entitlement that is scheduled to be removed.

Note: If the identity has another role that requires that entitlement, the entitlement removal request
is taken out of the plan.

Partition	the	Plan

At the end of plan compilation, all the individual entitlement requests identified from the original master plan
and the role expansion are partitioned into a set of smaller provisioning plans – one per target. The targets are
designated by the connector or integrationConfig that IdentityIQ uses to communicate with them. Connections
can include:

Note: Any requests in the plan that cannot be processed by any of the integration configurations or
read-write connectors are added to the unmanaged plan and are processed manually through
IdentityIQ Work Items.

See also "Implementing the Plan" on page 16.

Answering	Provisioning	Policy	Questions

After the plan is compiled, the project can have unanswered questions that must be presented to a person to
answer. The provisioning broker does not interface with the user and cannot get answers to these questions. The
workflow process, the component that controls the provisioning process, is responsible for getting the questions
answered.

Exceptions

Because the following processes can not present forms to users, this interactive provisioning policy phase does
not apply for the associated provisioning activities. These requests are only fulfilled if they can be completed with
the available information. Because remediation requests are access removal requests, these requests should not
require any additional data.

• Processes that manage certification remediations

• Processes that manager provisioning activities

• Policy-violation remediations

Generally projects that have unanswered questions are only an issues if the projects have activities that require
a new account to be created for a new assignment or a missing role.
SailPoint IdentityIQ System Administration Guide 15

Processing Provisioning Requests
Provisioning	Forms

The Lifecycle Manager Provisioning, Identity Refresh, and Identity Update Workflows invoke the Do Provisioning
Forms business process. This process presents questions on user-facing forms and collects the answers. The Do
Provisioning Forms process separates these actions into the following steps:

• Build Provisioning Form

• Present Provisioning Form

• Assimilate Provisioning Form

Optionally, you can assign owners for individual provisioning policy fields. When an owner is assigned, any
questions related to the field are sent to the field owner and not to the access requester. The controlling
workflow identifies who receives the questions and then submits the forms to the correct identities.

By default, the Lifecycle Manager Provisioning Workflow contains two opportunities to present provisioning
forms to a user, pre-approval and post-approval. The following named steps run the Do Provisioning Forms
workflow:

• Identity Request Initialize

• Identity Request Provision

A Workflow can have a different number of approval steps between the steps that present provisioning forms.
Each approval can modify items in the master plan that cause the project to be recompiled. For example, if an
approver rejects one of the role assignments, provisioning questions for an account that role requires might not
be needed.

Implementing	the	Plan

After the plans are partitioned and any missing fields are provided, the subdivided plans can be implemented
through one of the following mechanisms:

• “Integrations” on page 17

• “Direct Read-Write Connectors” on page 17

• “Work Items” on page 18

The results are recorded in the plan and indicate if the request was implemented immediately or placed in a
queue for future implementation. This status determines when the identity cube is updated to reflect the
provisioned changes. See also “Updating the Identity Cube” on page 18.

The following table provides an overview of the provisioning mechanism.

Provisioning Mechanism Plan Implementation

Integration Executors Managed plan implementation using integration
executors.Starts as an asynchronous process that
might not complete immediately.

Direct Read-Write Connectors Application objects contain the provisioning
configuration.

Work Items Unmanaged plan implementation using the
controlling workflow.
16 SailPoint IdentityIQ System Administration Guide

Processing Provisioning Requests
Integrations

Integrations are a separately licensed components that communicate with systems within your network. The
following table provides and overview of the integration modules and connectors.

Integration Executors attempt an immediate update of the target application. If the immediate update attempt
is unsuccessful, Integration Executors, place the activity in a queue.

Note: Even if the activity does not immediately commit, the Integration Executors cannot
communicate back to IdentityIQ when the request is completed. Therefore, these requests are
always considered to be queued.

See also "Plan Initializer Rule or Script" on page 18.

Direct	Read-Write	Connectors

Read-write connectors are available to manage data communication between IdentityIQ and an ever-increasing
number of applications. For applications using these connectors, you manage provisioning activities through the
variables in the Provisioning configuration for that application.

Provisioning using direct read-write connector with these applications is fully automated. These connectors
generally:

• Run the plan immediately.

• Can report back a committed status to IdentityIQ in real time.

• Confirm that the changes can be reflected on the identity cube immediately.

See also "Plan Initializer Rule or Script" on page 18.

System Module Connector

Provisioning systems, such as:
OIM, ISIM, FIM

Provisioning Integration Modules
(PIMs)

Read/write connectors and
IntegrationConfigs/Executors

IT Service Management, such as:
Remedy, Service Now, HP Service
Manager

Service Integration Modules
(SIMs)

IntegrationConfigs/Executors

Mobile device management
systems, such as: AirWatch,
MobileIron, Good Technology

Mobile Integration Modules
(MIMs)

Read/write Connectors

IT Security: HP ArcSight IT Security Integration Module IntegrationConfigs/Executors

Enterprise Applications: Oracle
EBS, SAP Portal, PeopleSoft,
Siebel and NetSuite

Enterprise Resource Planning
Integration Modules (ERP
Integration Modules)

Read/Write Connectors

Mainframe: RACF, CA-Top Secret,
CA-ACF2, RACF LDAP and Top
Secret LDAP

Mainframe Integration Modules Read/Write Connectors

Healthcare: Epic and Cerner Healthcare Integration Modules Read/Write Connectors

Identity Intelligence/Analytics:
SAP GRC

GRC Integration Module IntegrationConfigs/Executors

Governance platform: Amazon
Web Services and SAP

IaaS Governance Modules Read/Write Connectors
SailPoint IdentityIQ System Administration Guide 17

Updating the Identity Cube
IdentityIQ	Updates

For items that require updates to IdentityIQ, such as roles assigned to an identity or identity attribute changes,
a separate plan is created. These requests are similar to direct connector updates. Although no connector is
required to complete these internal updates, the requests are run immediately and are reported back as
committed when updated.

Work	Items

Work Items, opened in IdentityIQ that contain provisioning instructions, to provision unmanaged plans. The
controlling workflow or Remediation Manager is responsible for implementing an unmanaged plan. An
unmanaged plan:

• Includes provisioning requests to any application where data is aggregated using read-only connectors.

• Does not have an Integration Executor that communicates with the plan.

• Are identified and examined after the Integration Executors and direct read-write connectors are called.

If the unmanaged plan contains any requests, one or more work items are opened in IdentityIQ that contains the
provisioning instructions from the plan. Each work item is assigned to a user who is responsible for implementing
the changes required to complete the specified provisioning tasks. Work item assignees are often the application
or entitlement owner. When the provisioning action is completed, the work item assignee must manually mark
the work item as complete.

Note: Provisioning tasks managed through work items are considered queued, rather than
committed. Even if the assigned user marks the work item complete, IdentityIQ cannot
determine with certainty if the changes were actually made until the next aggregation from the
source application is completed.

Plan	Initializer	Rule	or	Script

You can specify a Plan Initializer rule or script to run during the implementation of the provisioning plan. An
installation-specific rule or script can be added to integration and provisioning configurations. When a rule or
script is specified, it runs immediately prior to running the provisioning activity for the application. Provisioning
is based on the provisioning plan and application associated configuration or integration executor.

See also “Implementing the Plan” on page 16.

Updating	the	Identity	Cube

Provisioning activities that occur completely within IdentityIQ, such as assigning a business role to an identity, are
the only provisioning actions that change the information on the identity cube. For example, implementing a
provisioning plan does not update role detections. You must perform an Identity Refresh to update the identity
based on the provisioned items. For example, to update the list of detected entitlements and roles, you must
perform an Identity Refresh.
18 SailPoint IdentityIQ System Administration Guide

Updating the Identity Cube
Identity	Refresh

Provisioning workflows generally includes an Identity Refresh step than can be enabled or disabled as needed for
the provision activity. To perform an identity refresh to update the Identity Cube, you must:

• Include an Identity Refresh step in the Workflow, or

• Run an Identity Refresh task after the Workflow completes.

To enable the Refresh step in the workflow the doRefresh variable must be set to True.

General	Guidelines

Direct Read-write connectors — For Direct read-write connectors that process requests immediately, the
Identity Refresh step is generally enabled. The changes to application accounts that the connectors make are
usually displayed immediately in IdentityIQ.

Queued Requests — Requests that were queued are not applied to the identity cube until a re-aggregation has
occurred from the application involved. As a result, the Identity Refresh step is typically disabled for provisioning
workflows that are managing integration configuration-driven provisioning activities, because the refresh can
not detect any changes until after an aggregation from the source system.

Items that were processed as Work Items from the unmanaged plan are treated as queued requests, because
manually closing a Work Item does not necessarily indicate all the work was completed. To confirm that the
request was processed, you must perform a re-aggregation from the source system. This aggregation must be
followed by an identity refresh to update the identity cube with the information.

Because the Application Accounts tab for the Identity Cube displays account data that is recorded on the Link
object for the identity, the tab lists the provisioned access immediately following the read-write connector
commit or following a re-aggregation from integration configuration-managed applications. However, the
entitlement data on the Entitlement tab and in any certification is not updated until the Identity Refresh task has

run.

Special	Case:	Optimistic	Provisioning

When the workflows are configured for Optimistic Provisioning, provisioned changes appear in IdentityIQ before
the changes are confirmed through re-aggregation. Optimistic Provisioning assumes that provisioning requests
are completed and then updates the identity cube to display the changes when the request is submitted, not
when the request is verified.

Optimistic provisioning configuration is useful for some testing scenarios or product demonstrations, but it is not
an ideal configuration for most production environments. Companies often prefer that IdentityIQ indicates a
confirmed state of system access and not a desired state.

To configure the workflows for Optimistic Provisioning:

1. Verify that the workflow has the Set the optimisticProvisioning process variable. By default, most
provisioning-related workflows are configured with this argument

2. Set the optimisticProvisioning process variable, or XML arg, option to True. The default value is false.

Note: To modify other workflows, add the variable and then follow the steps listed above.
SailPoint IdentityIQ System Administration Guide 19

Summary of Workflows, Tasks, and Rules in Provisioning
Summary	of	Workflows,	Tasks,	and	Rules	in	Provisioning

The following table provides an at-a-glance list of workflows, tasks and rules for provisioning through IdentityIQ.

Type Name Purpose / Usage

Workflow Lifecycle Manager:
LCM Provisioning
LCM Create and Update
LCM Manage Passwords
LCM Registration

Manages actions requested through Lifecycle
Manager.

Workflow Identity Update Manages the provisioning actions required
based on an Identity Cube update.

Workflow Identity Refresh Manages the provisioning actions required
from an Identity Refresh.

Workflow Lifecycle Event – Joiner

Lifecycle Event – Manager Change

Lifecycle Event – Leaver

Lifecycle Event – Reinstate

Controls the Lifecycle Event-driven activities,
which can contain provisioning actions.

Workflow (subprocess) Do Provisioning Forms Creates, presents and gathers data from
provisioning forms. This step is the interactive
provisioning policy phase of provisioning.

Workflow (subprocess) Do Manual Actions Presents the unmanaged portion of a
provisioning project as work items to be
processed manually. Update and Identity
Refresh workflows use this step. Lifecycle
Manager has a similar step but audits
differently.

Workflow (subprocess) Provision with Retries Manages retries on the provisioning actions for
Lifecycle Manager.

Workflow (subprocess) Identity Request Initialize
Identity Request Violation Review
Identity Request Approve
Identity Request Approve Identity
Changes
Identity Request Provision
Identity Request Notify
Identity Request Finalize
Provisioning Approval Subprocess

These workflows subdivide Lifecycle Manager
Provisioning into more manageable workflow
parts. LIfecycle workflows also use some or all
of these tasks.

Task Identity Refresh Creates provisioning requests based on
application of role assignment rules or role
detection.

Task Perform Maintenance Processes certification-generated and policy
violation-generated remediation requests.
20 SailPoint IdentityIQ System Administration Guide

Summary of Workflows, Tasks, and Rules in Provisioning
Task Account Aggregation Provisioning activities driven by integration
configurations or Work Items require a
re-aggregation from the target system before
the identities can be updated with the access
change.

Rule FieldValue Identifies the default value for the Provisioning
Policy field.

Rule AllowedValues Constrains allowed values for the Provisioning
Policy field.

Rule Validation Defines validation process for Provisioning
Policy field.

Rule Owner Defines owner for Provisioning Policy field.

Rule PlanInitializer Can be specified for any IntegrationConfig or
ProvisioningConfig to run installation-specific
pre-processing in Plan Evaluation step before
carrying out provisioning.

Rule IdentityTrigger Can determine the triggering of a Lifecycle
Event.

Type Name Purpose / Usage
SailPoint IdentityIQ System Administration Guide 21

Summary of Workflows, Tasks, and Rules in Provisioning
22 SailPoint IdentityIQ System Administration Guide

Specifying Custom Forms
Chapter	2:	Forms
Forms are used to present items to users for input in several components of IdentityIQ. They are used with:

• Application and role provisioning policies

• Identity provisioning policy (only applicable for installations using Lifecycle Manager)

• Data entry and approvals in workflow steps

• Present simplified views for process variable and step argument editing in workflows

• Report filter specification

The form implementation and available features varies slightly in these areas, so some features might apply to
one use and not to the others, this is noted throughout this document.

For more information about using Forms with IdentityIQ, refer to the forms documents on the SailPoint customer
support site or contact your support agent for more information.

Specifying	Custom	Forms

Form specification is different for each available use. All types of provisioning policies can be specified through
the IdentityIQ user interface. In all cases, some of the more advanced and custom forms for workflows can be
generated through the Business Process Editor. Some of the more advanced options. however, are only available
through subsequent editing of the XML definition. Workflow forms created through the Business Process Editor
are embedded within the workflow XML. Workflow forms created through the Business Process Editor are
embedded within the workflow XML. Alternatively, they can be defined as independent form objects which can
be referenced by multiple workflows, by creating them directly in XML and importing them into IdentityIQ.
Report forms must be created as external XML documents and imported into IdentityIQ.

Role/Application	Provisioning	Policies

Provisioning forms are presented to a user when a provisioning request cannot be completed without user input.
The data collection fields that are presented on the form come from the role or application's Provisioning Policy,
which is defined by the <Form> element inside the Bundle (role) or Application object's XML. The actual form
presented to the user during provisioning of roles or application accounts are system-generated at run-time
based on skeleton forms that are pre-defined in IdentityIQ. Requests made through LCM are built with the
Identity Update form. Requests that come through the Identity Refresh workflow use the Identity Refresh form.
These forms contain a read-only section at the top that displays identifying information about the request, for
example, Account ID, First name, Last name. The fields defined in the provisioning policy forms are added to the
form at run time, when the form is presented to a user.

Provisioning policy forms define the fields required for the role or application account to be provisioned, often
including a default value or script/rule for calculating a value. When a field cannot be calculated by the system
during provisioning of an account or role, it must be presented to a user through a form to get the required value.
When multiple accounts or roles are part of the same provisioning request, the form might display a collection
of fields pulled from various provisioning police forms. On the form, the fields are, by default, grouped in sections
according to the application or role to which they belong; this grouping can be overridden, by specifying a section
attribute on each of the fields, naming the section into which each field should be placed. See the section
attribute description in“Fields” on page 30.
SailPoint IdentityIQ System Administration Guide 23

Specifying Custom Forms
Defining	Application	Provisioning	Policy

An application provisioning policy can be defined for an application on the Provisioning Policies tab of the
Application Configuration page, Applications -> Application Definition. Separate policies can be defined for
create, update, and delete requests. Additionally, provisioning policies can be specified for creating or updating
groups.

The required fields should be specified in the policy with the appropriate field attributes defined. These
attributes can include a default value or a script/rule to calculate a default value for the field that can be based
on the Identity attributes for the Identity for whom the request is being made. The field Name should match the
corresponding native attribute on the application. If Review Required is selected, the field is always presented
on a form during provisioning-request processing, even if a default value is provided or calculated successfully.

For creation-type operations you can specify dependencies between applications and application attributes that
imply ordering of the provisioning requests.

Field	Properties	and	Value	Properties

The provisioning policy field attributes are grouped into two categories: Field Properties and Value Properties.

Field Properties describe field meta data. This includes the field's name, display name, tool tip help text, type,
and owner. It also includes indications of whether the field is single or multi-valued, read-only, hidden, required,
or review required. Fields can also be marked with a flag to indicate whether changes to the field value should
cause the form to be reloaded. The Read-Only and Hidden attributes can be set to a static value (True or False)
or can be defined programmatically through a rule or script. The rule and script options are used to dynamically
hide and show the field, or change its edit properties, when the form is reloaded based on changes to values of
other fields.

The Value Properties section includes properties specifically related to the field's value. A default value, a set of
permitted values, and the field's validation logic can all be set here. The Dynamic attribute determines whether
the field's value should be reevaluated on every form reload, when the form is reloaded based on a change in
another field's value. It should only be selected when the field's value is rule or script based, such that it might
change during the form processing based on other field values entered there.

The default value can be specified as a static value or can be calculated programmatically by a rule or script. In
an account creation provisioning policy, an additional option, Dependent, is available as part of the ordered
provisioning implementation, which is only available on account create provisioning policies. When the
dependent option is selected, an application and attribute must also be selected and the value of the field is set
to that attribute value for the Identity. Only applications on which this application is dependent are available for
selection here.

The Allowed Values list can be specified as a list of values or can be set dynamically by a rule or script. Field
validation is optional and can be managed by a reusable rule or with a script.

Defining	Role	Provisioning	Policies

Role provisioning policies are specified through the Role Editor: go to Setup -> Roles, select the role name, and
click Edit Role. Then click Add Provisioning Policy and specify the fields for the policy.

Select the application to which the role provisioning policy applies and then specify the fields for the policy. Fields
are specified for role provisioning policies exactly as they are specified for application provisioning policies. Role
provisioning policies and application provisioning policies are not the same or to be used interchangeably,
however.
24 SailPoint IdentityIQ System Administration Guide

Specifying Custom Forms
Role provisioning is not intended for initial role assignment or for the provisioning of account attributes that are
not entitlements. Using role provisioning and application provisioning interchangeably cause conflicts and
should be avoided.

Role provisioning is designed to be used for profiles that use complex logic, where it is unclear what should be
provisioned or de-provisioned. The role provisioning policy is used to state what to provision, "x and y" or "p and
q," and to use the contents of the Identity to make that decision.

Identity	Provisioning	Policy

The Identity Provisioning Policies are optional forms that can be specified to define the fields that must be
provided when an Lifecycle Manager Create or Edit Identity request is submitted. When no Identity Provisioning
Policy is defined for the create function, IdentityIQ automatically builds a form that includes the entire set of
defined Identity attributes (standard and extended) for the installation. The auto-generated update provisioning
policy form contains only identity attributes marked as editable. An Identity Provisioning Policy can be defined
to select a subset of those fields, to affect the presentation of those fields, for example, grouping in sections or
multi-column layout, or to build in some logic to auto-populate some of the fields.

A third identity provisioning policy also exists to support self-service registrations for IdentityIQ. This form is
presented when self-service registration is enabled and a new user requests an IdentityIQ account. The form
prompts the user for the information required to create a new user account for the installation.

To create an Identity Provisioning Policy, go to Identity Provisioning Policy of the Lifecycle Manager configuration
page. Three policies are available: Create Identity, Update Identity, and Self-service Registration. If a policy has
already been defined, the name is displayed. Click the name to open and edit the policy. If no policy has been
defined for one of these types, click Add Policy to add a new one. Add fields to the policy, defining field attributes
as needed on the field definition parallels for an application or role provisioning policy.

Identity Provisioning Policy forms are saved as independent form objects. System Configuration entries (entry
key="createIdentityForm", "updateIdentityForm", and "registerForm") point to the appropriate forms for each
identity provisioning policy by name. The identity provisioning policy forms are saved as <Form> objects inside
the UIConfig attributes map under the keys lcmCreateIdentityProvisioningPolicy and
lcmUpdateIdentityProvisioningPolicy on the IdentityIQ Debug pages. These form definitions can be edited
directly to implement some of the presentation options, for example, multi-columns or sections. The
configurable option available on the user interface do not include these features.

Note: Form features related to the Section attribute (which includes subdividing the form into
sections and creating multi-column form configurations) are not supported through the user
interface. These must be managed directly in the Form Object XML. Any fields added through
the user interface after dividing the form into sections are automatically added to the first
section. These fields can be moved to other sections by editing the XML.

Workflow	Forms

Several standard work item renderers are provided with IdentityIQ for presenting approvals or other data
requests to users. These are written as JSF pages. It is possible to write custom forms in JSF, specifying the JSF page
as the renderer for the approval. This is rarely done. Customers who want to use custom forms generally specify
these through a Form object.

Forms are used in workflows to present data-gathering pages to a user and define data presentation for approval
activities. In many cases, implementations rely on the standard approval work item forms for normal approval
actions so do not need to implement custom forms for their approval steps, but they still might choose to use
custom forms for non-approval data-gathering activities to which the normal approval forms do not apply. A
SailPoint IdentityIQ System Administration Guide 25

Specifying Custom Forms
custom form can be added to a workflow through the Business Process Editor (Setup -> Business Processes) by
right-clicking a step and choosing Add Form or by adding a form element to a step in the Workflow XML.

Whether the form is specified for an approval or a data-gathering activity, the form element must be embedded
within an approval element in the XML. The user interface auto-creates it within an approval element. The
workflow XML to specify a custom form looks like this:

?xml version='1.0' encoding='UTF-8'?>

<!DOCTYPE SailPoint PUBLIC "sailpoint.dtd" "sailpoint.dtd">

<sailpoint>

<Workflow explicitTransitions="true" libraries="Identity" name="Example Workflow"
type="IdentityLifecycle">

…

 <Step name="Display Form">

 <Approval name="Please enter some data" owner="admin" return="selectedApprover"
send="trace ">

 <Form>

 … <!-- Form content goes here -->

 </Form>

 </Approval>

 </Step>
A custom form can also be created as an independent form object, defined in a separate XML document and
imported into IdentityIQ, visible through the console or the Debug pages by viewing the Form objects, and
referenced in the approval element as an argument like this:

 <Approval…>

 <Arg name='workItemForm' value='Custom Form Name'/>

 …

 </Approval>

This option promotes form reuse across workflows. However, these independent form objects cannot be edited
through the Business Process Editor like the embedded forms can.

Process	Variable	and	Step	Forms	in	Workflows

While forms added to steps on the Process Designer tab of the Business Process Editor are used to request data
required by the process from a user, such as a value for a missing attribute, the process variable and step forms
are used to define the information presented on the Basic Views of the Process Variables tab and the Arguments
tab of the Step Editor.

These forms are created as an independent form object, defined in a separate XML document and imported into
IdentityIQ. They are visible through the console or the Debug pages by viewing the Form objects.

The process variables forms are used to simplify the information displayed on the Process Variables tab by hiding
those variables that are rarely, if ever, modified and displaying variables in more logical groups. Changes made
in the Basic View are persisted to the Advanced View and more complex configuration can be performed there
if needed.

The step forms are referenced from the workflows or stepLibraries. These forms define the form that is
presented on the Arguments tab of the Step Editor panel and works similarly to the process variable forms.
26 SailPoint IdentityIQ System Administration Guide

Components of a Form Definition
Both of these forms are referenced from workflows using the configForm variable. The forms can be defined and
viewed and edited on the IdentityIQ debug page.

Report	Forms

Report definitions often include a reference to a Form object for displaying the report-specific filter options to
the report user. In the Report XML, the form is referenced with a <ReportForm> tag:

<ReportForm>

<Reference class="sailpoint.object.Form" id="39535985298ff9839ff98dd" name="My
Custom Report Form" />

</ReportForm>

The Form is defined separately in its own XML document and imported into IdentityIQ as a Form object. Each
section within the form is created as a separate page in the Edit Report window, where you specify the filters that
are applied to the report. The report-specific forms are always merged with the Report Form Skeleton, which
defines the Standard Properties and Report Layout pages that apply to every report.

Components	of	a	Form	Definition

The basic elements in a Form definition are:

<Form>

 <Attributes>(map of name/value pairs that influence the form renderer)

 <Button> (determine form processing actions)

 <Section>(Subdivision of form; may contain nested Sections and Fields)

 <Field>(may contain Attributes map, Script to set value, Allowed Values Definition
script, and Validation Script)

Within each of these sections of the form definition, certain attributes might apply to some form uses and not
to others. The table below provides a high-level overview of which of the available form elements can be
specified for each.

* Limitations on the Attribute and Button elements for Identity provisioning policy are discussed in “Attributes”
on page 28 and “Buttons” on page 29.

Form Usage Form Component Availability

Field Button Section Field

Application and role provisioning
policies (Form)

Identity provisioning policy * * ü ü

Workflow approval ü ü ü ü

Report ü ü
SailPoint IdentityIQ System Administration Guide 27

Components of a Form Definition
Form

The Form element should contain a single attribute to define the form: a name.

<Form name="My Custom Form">

If the form is stored in the database as an independent Form object, the name must be unique, no two Form
objects can share the same name. This restriction does not apply to Forms defined in-line within a workflow
approval step. Name is required for independent Form objects, it is recommended but is not required on in-line

forms.

Attributes

Forms can include a map of attributes that are used by the renderer. These are applicable only to workflow forms
and, in a limited way, to the identity provisioning policy form.

Attributes are specified with the following keys:

Note: The Boolean attributes are only specified if they are true; they default to false when omitted.

Attributes maps are specified as shown here:

 <Attributes>
 <Map>
 <entry key="pageTitle" value="Review Non-Employee Request"/>
 <entry key="readOnly" value="true"/>
 </Map>
</Attributes>

Attributes do not apply to report forms because the sections in a report form are pulled out of the report's form
definition and combined into the Report Form Skeleton for display in the user interface. Even if they are specified
in the report form, these attributes are never applied to the resultant form that is displayed to the user.

Key Description

pageTitle Title to render at top of page, typically larger and a different color than the form
title; also displayed in browser window header bar in some cases

title FormTitle, shown at top of form body

subtitle Form subtitle, shown below title

readOnly <entry key="readOnly= "" value="true""/> makes form read-only so the fields
are rendered as uneditable text or as disabled HTML components

hideIncompleteFields hideIncompleteFields="true" hides any fields that do not have all of their
dependencies met.
Usually only set programmatically to control field presentation in provisioning
policy forms, though can be specified in a workflow form XML.

This does not create dynamically displayed fields on forms. Fields are not
displayed on a form after their dependency values on the same form are
entered. Use the new hidden attribute on Fields and Sections to achieve this
dynamic display functionality.
28 SailPoint IdentityIQ System Administration Guide

Components of a Form Definition
On an identity provisioning policy form, the pageTitle attribute is ignored because the main page title is
programmatically set based on the other action being performed (Create New Identity, Edit Identity Attributes
for [Username], or New User Registration). The title and subtitle attributes are displayed in the user interface
when specified in the form's attributes map. The readOnly, and hideIncompleteFields function on this form type
should not be used because they do not provide useful functionality for this type of form.

Buttons

Buttons enable the user to indicate which action to take next and how to process the data on the form. Buttons
only apply to workflow forms. Buttons can be specified on identity provisioning policy forms, but the window
does not support any action on them other than next (submit). Since Submit and Cancel buttons already exist
on the window and perform the appropriate functions for the window, additional buttons are unnecessary. They
cannot be specified in a role or application provisioning policy form, and they are not used by the report executor
when it combines the specific report's form with the Report Form Skeleton.

Buttons require two attributes, a label and an action. The label determines the text displayed on the button. The
action determines what the system does in response to clicking that button. There are four available actions:

• next: save (and validate fields with validation scripts where specified) any entered form data and set the
work item status to approved. This can then be used in the Transition logic to advance the workflow to
the next step (OK/Save/Approve/Submit functionality).

• back: save entered form data (no validation is performed) and set the work item status to rejected. This
can then be used in the Transition logic to return to a previous step or any other appropriate action for
a rejection. Saved value is redisplayed on this form if the workflow logic process back through this step
again.

• cancel: close the form, suspend the workflow and return to previous page in user interface, this leaves
work item active. awaiting a different action choice by the user.

• refresh: save the entered form data and regenerate the form; not a state transition - just a redisplay of
the form (rarely used).

These are examples of button elements.

<Button label='Submit' action='next'/>

<Button label="Cancel" action="cancel"/>

Sections

Sections divide a form into logical groupings that are visually marked on the window with boxes around the fields
in each section. They can be specified in the XML for all policies except application and role provisioning policies.
By default, a separate section is created on the provisioning form for each application (each application's
provisioning policy form is rendered in its own section). However, fields in a provisioning policy form can be
specified with a section attribute that causes them to be displayed in different sections from the defaults.
Sections are treated differently on report forms, each section becomes a separate page on the Edit Report
window rather than just a separate section on a contiguous form.

Sections are specified in the form object's XML with a <Section> tag and can be modified by the attributes shown
in the table below.

Section Attributes Description

name Internal name for section (might be referenced by field objects in some forms).
SailPoint IdentityIQ System Administration Guide 29

Components of a Form Definition
These are examples of Section elements in the XML for forms.

<Section name="authorizations" label="Authorizations" type="datatable">

<Section columns="2" label="rept_app_section_label" name="customProperties">

Sections contain nested field elements and might contain nested sections when sub-groupings are needed.

Fields

Fields are the core element of forms, they are the mechanism by which data gets communicated to and from the
user. Fields offer options that affect the appearance or functionality of the field. Some of these are commonly
used and others are used very infrequently. Some of these are specified as in-line attributes in the <Field> tag
and others are specified as nested elements within the Field.

Field attributes appropriate to all form uses are:

label If non-null, the label is displayed above the section fields in a box on the section
border.
For report forms, the label is specified in the Edit Report window's sections list.
Labels can be specified with text, message catalog keys, or variables (specified
with $(varName) notation).

type Rendering type (optional).
When no type is specified, fields in the section are editable fields, displayed one
field per row, unless the columns attribute specifies otherwise.
Other type options are:
datatable: makes fields in the section non-editable; generally used to display a
read-only informational table to give the form user a context for the form's
requested data
text: indicates the section is a block of informational text; if multiple fields are
included in a text section, each field is rendered on a separate line with line
breaks between them

columns Number of columns contained in the form section; fields are placed in columns
left to right, one field per column before moving to the next row.

For example, in a 2 column layout (columns="2"), 4 fields are displayed:
Field 1 Field 2
Field 3 Field 4

Section Attributes Description
30 SailPoint IdentityIQ System Administration Guide

Components of a Form Definition
Field Attributes Description

name Name for the field that can be referenced in code as the variable name in which
the field's value is stored.

Avoid using the following field names:

accept
accept-charset
action
autocomplete
enctype
method
name
novalidate
target

As well as global attributes:

accesskey
class
contenteditable
contextmenu,data-*
dir
draggable
dropzone
hidden
id
itemid
itemprop
itemref
itemscpe
itemtype
lang
spellcheck
style
tabindex
title

displayName Label for the field; can be text or a message key.

helpKey Tool tip help text; can be text or a localizable message key.

Example:

<Field name="firstName" displayName="First Name"
helpKey="Enter the person's first name" />
SailPoint IdentityIQ System Administration Guide 31

Components of a Form Definition

type

Field datatype; influences the display widget used to display the field on a form.

Valid values are:
string, int, long, boolean, date, and SailPoint object types (Identity, Bundle,
Permission, Rule, Application), default is string.

SailPoint objects are displayed as drop-down lists or combo boxes if multi="true"
is also specified. Specifying type="boolean" renders the field as a checkbox;
specifying type="date" adds a calendar from which the date can be selected.

To pre-select an object in the list, specify the name of the object (not an actual
object) as the "value" attribute.

Example:

<Field name="role" displayName="Role" type="Bundle"
value="TRAKK Basic" />

multi Boolean indicating whether the field is multi-selectable.

This attribute is only appropriate to drop-down lists, which are then displayed as
combo boxes. Used this with SailPoint object field types or with a nested
AllowedValues / AllowedValuesDefinition element that populates a selection list
for the field.

Example:

<Field name="apps" displayName="Applications"
type="Application" multi="true"/>

readOnly Boolean indicating that the field cannot be edited on the form. The value is
displayed as text not in an editable box.
Not necessary to specify on fields in a datatable section, since they are already
read-only.

Field Attributes Description
32 SailPoint IdentityIQ System Administration Guide

Components of a Form Definition

hidden

Boolean that, when true, prevents the field from being displayed on the form.

This attribute is used in reporting to make fields available for inclusion on the
report detail grid but not actually include them by default.

This can be used in any form, but might not be commonly implemented:

• In role/application provisioning policies, fields are only shown if the
user needs to enter data, so forcing fields to be hidden is not helpful.

• In workflows, the hideIncompleteFields attribute on the Form
object is more likely to be used with the dependencies attribute on
Field to defer field display until dependencies are fulfilled.

• In Identity provisioning policy, fields that should be hidden can be
omitted from the form instead, however, this could be used for
fields that always contain the same value for all users to set that
value and suppress the field from the data entry form. For example,
<Field name="status" hidden="true" value="NewHire"
/

Note: Attributes mark hidden are not included in the plan. You must manually
add the includeHiddenFields property to the form to include the hidden fields
in the plan.

<entry key="includeHiddenFields" value="true"/>

required Boolean indicating whether a value is mandatory for the field; required="true"
marks field with * on form to indicate required and prevents form submission
without a value for the field

Example:<Field name="myfield" displayName="My Field"
required="true"/>

postBack Boolean that, when true, causes the form to refresh when the field's data value
changes, running any rules or scripts that run on form load

<Field name="application" displayName="Application"
type="Application" postBack="true"/>

Supports conditional display/editing of sections or fields based on other field
attributes values, automatic population of fields based on other fields, and
validation of fields based on actions taken on the form. It only runs when a field
loses focus, so it can be used on selection fields or text entry fields.

columnSpan Used when the section is configured with multiple columns; specifies the number
of columns the field should span

<Section columns="2" label="Identity Info" name="identInfo">

<Field name="fname" displayName="First Name" columnSpan="2"/>

Field Attributes Description
SailPoint IdentityIQ System Administration Guide 33

Components of a Form Definition
filterString Used for fields where type is a SailPointObject class to specify a filter to restrict
the set of selectable objects presented in the drop-down list.

filterString is specified according to the filter string syntax and should be
specified in single quotes so double quotes can be used within the string.

Example:
<Field displayName="Role" name="role" type="Bundle"
filterString='name.startsWith("TRAKK")' />

section Statically defined fields in a form's XML are defined within a section element, so
any section attribute specified on those fields is ignored. However, the section
attribute can be used to organize fields in an application or role provisioning
policy or on a dynamically rendered form.

Application and role provisioning policy forms do not have section elements, so
the section attribute can be used to force fields to be grouped differently than
the default (default is by application or by role).

Example:

These two fields are put on the form in separate sections, labeled "Important
Items" and "Optional Items" respectively.

<Field name="myField" displayName="My Field"
section="Important Items"/>

<Field name="optField" displayName="Optional Field"
section="Optional Items"/>

The section attribute on fields is also used in dynamically created forms (such as
in Reports where fields are added to the form programmatically through an
initialization script). This attribute enables the code to specify the section of the
form into which the field should be added.

Field Attributes Description
34 SailPoint IdentityIQ System Administration Guide

Components of a Form Definition
displayType Forces string fields to display as specified, used only for string fields

Valid displayTypes are: radio, combobox, textarea, and label

displayType="radio" and "combobox" are used to override the default display
format for permitted-values fields (radio is the default for 2 options while >2
options is rendered as comboBox by default). textarea is used to make a string
field display as a text area instead of a regular entry field.

For label, you can use the field displayName for the
text/message key of the label.

<Field name="dept" displayName="Department"
displayType="radio"

<AllowedValues>

<String>Accounting</String>

<String>Manufacturing</String>

<String>Engineering</String>

</AllowedValues>

</Field>

<Field name="comments" displayName="Comments"
displayType="textarea" />

value Sets the default/initial value for the field. This can be overwritten on the form in
most cases as long as the field is not marked readOnly. This is used within
sections of type="text" to specify the text to display

For application or role provisioning policies, setting a value (whether with this
attribute or through a nested <Value>, <RuleRef>, or <Script> element) prevents
the field from being included on the form unless reviewRequired is specified
since provisioning policies only collect values from a user that they cannot
determine or calculate independently.

In workflow approvals, value can be specified by string, rule, script, call, or
reference (string is default).

In reports forms, the value is a reference to the report taskDefinition's input
parameter from which to retrieve the starting / default value for the field, for
example, value="ref:applications".

Example:

<Field name="role" displayName="Role" type="Bundle"
value="TRAKK Basic"/>

Field Attributes Description
SailPoint IdentityIQ System Administration Guide 35

Components of a Form Definition

These attributes only apply to the application and role provisioning policies:

Fields can also contain nested elements that help control the display or use of the field.

dynamic This attribute performs two separate functions:

(1)For fields with an AllowedValuesDefinition, delays running of allowed values
scripts/rules until the field is clicked, instead of running at form load, so it can
make use of other data entered on the form instead of just data available on
initial form load.

(2)During form refresh in response to a value change of a field marked for
postBack, only fields marked as dynamic (dynamic="true") have their value
scripts/rules re-run; otherwise, the initial value calculated for the field on form
load remains in effect as the field's default value

Field Attributes Description

dependencies List (CSV) of other fields that must be evaluated before this field.

Dependencies on the provisioning policy (form) field cause that field to be
deferred to a subsequent form that is presented after the form on which its
dependencies are presented. The field might also be calculated based on those
dependencies instead of presenting it on a later form.

This attribute can also be used with dynamic/allowedValues fields. Values of
dependencies fields are made available to the allowedValues script or rule, even
if the field is presented on a different form.

reviewRequired Enables a default value to be assigned to the field while still including the field
on the form displayed to a user. This enables the default to be edited. If
reviewRequired="true" is not specified, provisioning policy form fields with a
default value (or value script/rule that returns a value) are omitted from the
user-facing form and the default value is automatically used.

authoritative Boolean that specifies whether the field value should replace the current value
rather than be merged with it. Valid for multi-valued attributes only:

<Field name="costCenter" displayName="Cost Center"
multi="true" authoritative="true"/>

Field Attributes Description
36 SailPoint IdentityIQ System Administration Guide

Components of a Form Definition
Nested Elements within
Field Elements

Description

Description Field description, used for XML self-documentation. Not displayed in user
interface.

<Description>
 This field stores the Identity's first name.
</Description>

Attributes Attribute map used to control field rendering, specific to the field type. The
most common attributes are height and width which are usually specified for
textarea fields and for entry boxes that need to be other than the default
rendering size. Units for height and width are in pixels

<Attributes>
 <Map>
 <entry key="height" value="200"/>
 <entry key="width" value="100"/>
 </Map>
</Attributes>

Two special attributes - xtype and vtype - are discussed in the section below.

Value Alternative to "value" attribute on <Field>. This is required when specifying
complex datatypes such as Map or List.

<Value>
 <List>
 <String>Thing 1</String>
 <String>Thing 2</String>
 </List>
</Value>

Also needed for fields of type Date, which are specified as the utime
representation of the date:

<Value>
 <Date>1231971297</Date>
</Value>

Can be used to specify simpler types like String, Boolean, etc. but not commonly
done because value attribute is simpler.
SailPoint IdentityIQ System Administration Guide 37

Components of a Form Definition
Script Script used to initialize the value of the field, alternative to the value
element/attribute. Automatically created for fields whose value is set by script
through user interface specification.

Example:

<Script>
 <Source>
 [beanshell code goes here]
return [value or variable that contains value to assign to
the field];
 </Source>
</Script>

RuleRef

Reference to a reusable rule for initializing field value. Alternative to <Script>
(and value attribute). Automatically created for fields whose value is set by
script through user interface specification.

<RuleRef>
<Reference class="Rule" name="My Rule"
id="402839343985ff930d" />
</RuleRef>

AllowedValues

Specifies a set of values from which the user can select to assign the field value.
Automatically created for fields with an allowed values property set to Value
(with a list of values specified) through user interface specification.

<Field name="dept" …>
 <AllowedValues>
 <String>Accounting</String>
 <String>Manufacturing</String>
 <String>Engineering</String>
 </AllowedValues>
</Field>

The list renders as radio buttons when only two options exist (and multi is not
allowed), as a listbox for more than two options, and as a combobox for
multi-selectable fields.

Nested Elements within
Field Elements

Description
38 SailPoint IdentityIQ System Administration Guide

Components of a Form Definition
AllowedValuesDefinition Populates a list of values from which the user can select a value for the field. This
field contains either a <Script> block that specifies the list programmatically or
a <RuleRef> that points to a rule containing the beanshell for generating the list.
Automatically created for fields with an allowed values property set to Script or
Rule through user interface specification.

<AllowedValuesDefinition>
 <Script>
 <Source>
 import sailpoint.object.*;
 List l = new ArrayList();
 for(WorkItem.State enumItem :
WorkItem.State.values()) {
 List l2 = new ArrayList();
 l2.add(enumItem.toString());
 l2.add(enumItem.getMessageKey());
 l.add(l2);
 }
 return l;
 </Source>
 </Script>
</AllowedValuesDefinition>

Alternative to AllowedValues element and more commonly used. The list
renders as radio buttons when only two options exist (and multi is not allowed),
as a listbox for more than two options, and as a combo box for multi-selectable
fields.

ValidationScript Script used to examine and validate the field value entered by the user. The
value entered is passed to the validation script in the variable named "value."

<ValidationScript>
 <Source>
 if (value > 10) {
 return "Value must be less than or equal to 10";
 else
 return null;
 </Source>
</ValidationScript>

Returns null if no errors and an error message (as string or
SailPoint.tools.message object) if validation errors exist.

ValidationRule Reference to reusable rule for field validation. This is the alternative to
ValidationScript.

<ValidationRule>
 <Reference class="Rule" name="My Validation Rule"
id="4028392342f5ff9301" />
</ValidationRule>

Nested Elements within
Field Elements

Description
SailPoint IdentityIQ System Administration Guide 39

Components of a Form Definition
OwnerDefinition Used only for application and role provisioning policies to determine the
Identity to whom the fields should be presented. This enables specification of a
RuleRef,
script, a Value element or a Value attribute:

<OwnerDefinition>
 <RuleRef>
 <Reference class="rule" name="My Owner Rule"
id="4038293483598523" />
 </RuleRef>
</OwnerDefinition>
or
<OwnerDefinition>
 <Script>
 <Source>
 import sailpoint.object.*;
Identity
myIdentity=context.getObjectByName(Identity,"Walter.Henders
on");
 return myIdentity;
 </Source>
 </Script>
</OwnerDefinition>
or
<OwnerDefinition value="IIQApplicationOwner"/>

Can provide either the string name of owning Identity or the Identity object.

As with Field value, OwnerDefinition value can also be expressed as a nested
element. It can be a string Identity name or an Identity object:

<OwnerDefinition>
 <Value>
 <String>Walter.Henderson</String>
 </Value>
</OwnerDefinition>

Three special names exist that are translated by IdentityIQ into the appropriate
Identity so an OwnerDefinition script is not required for them:
- IIQParentOwner - owner of the role or application containing the provisioning
policy form
- IIQApplicationOwner - owner of the application associated with the
provisioning policy form
- IIQRoleOwner - owner of the role containing the provisioning policy form

<OwnerDefinition value=""/> assigns and presents the field to the access
requester.

The user interface offers these options for setting field owners: Requester (sets
OwnerDefinition to ""), Application Owner (sets to "IIQApplicationOwner"),
Role Owner on Role Provisioning Policies(sets to "IIQRoleOwner"), and Rule and
Script (save as OwnerDefinition with nested RuleRef or Script, as shown above).

Nested Elements within
Field Elements

Description
40 SailPoint IdentityIQ System Administration Guide

Working with the Form Editor
Working	with	the	Form	Editor

The Form Editor provides a graphical user interface enabling you to create and edit forms without having to edit
the xml directly.

The Form Editor contains the following sections:

• Detail View — detailed information about the selected form

• Expandable Tree View — provides an ordered, hierarchical view of the form components

• Edit Options — the available attributes for the selected form item

Detail	View

This section displays the detail information about the selected form on clicking the Details button. The following
table lists displayed attributes for the respective Form Type:

Expandable	Tree

The expandable tree section provides an ordered and hierarchical view of the form components.

AppDependency Applies only to application provisioning policies as part of the ordered
provisioning function; sets the value for a field based on the value of an attribute
on another application on which it is dependent

<Field displayName="Login ID" name="login" type="string">

<AppDependency applicationName="LDAP"
schemaAttributeName="employeeNumber"/>

</Field>

This can only be specified when the application has dependencies declared and
can only reference attributes on an application on which the application is
dependent. The user interface option for field value named Dependency
creates this element in the field definition.

Form Type Attributes

Application Provisioning Policy Form Title, Subtitle, Wizard, Owner

Role Provisioning Policy Form Title, Subtitle, Wizard, Application, Owner

Workflow Form Title, Subtitle, Wizard

Nested Elements within
Field Elements

Description
SailPoint IdentityIQ System Administration Guide 41

Working with the Form Editor
The tree section can be subdivided into the following components:

• Action buttons — buttons for following actions:

- Add Section — adds section to the expandable tree view

- Add Button — adds button to the bottom of the expandable tree view
Note: The Add Button is applicable to Workflow Approval Forms.

- Preview Form — displays the form layout for all included form components in editor. Helps to
preview the form while developing a form to see how it renders on actual operations.

• Components in the tree view — Following are the different components of the tree panel:

- Section — Multiple sections can be added to the tree panel through the Add Section button. Using
+ icon Fields and Row with Columns can be added. The Section item can be expanded or collapsed
by clicking on them.

• Add Field — Fields can be added under the Section.

• Add Row with Columns — Rows with a maximum of four columns can be added under the
Section using the Choose how many columns in this row drop down list under the Edit Options
section.

Note: When using Rows, the columns attribute of Section and columnSpan attribute of Field
would be calculated by Form Editor and existing values would be overwritten.

- Button — All the defined Buttons are added at the end in the tree panel.

Reordering	Form	Components

Form components can be reordered using drag/drop feature in the following way:

• Sections — sections can be reordered. Sections cannot have sections within them.

• Rows — rows can be reordered within the Section or dragged and dropped into any Section.

• Fields — fields can be reordered within Rows or dragged and dropped into any Section.

• Buttons — can be reordered only within Buttons.

Note: For inappropriate moves of the form components the not allowed icon is displayed.

Edit	Options

The Edit Options section on the Editor page displays the attributes that must be modified for the respective
actions.

Note: Click on the Apply button after the attributes are modified.

Section

Attributes Description

Basic

Name Internal name for section.
42 SailPoint IdentityIQ System Administration Guide

Working with the Form Editor
Fields	and	Rows

Label Label of Section determines Section text on Edit page.

Labels can be specified as text, message catalog keys, or variables (specified with
$(variableName) notation).

Subtitle Section subtitle as description (displayed at the top of the section, above all fields
in the section).

Settings

Hidden Boolean that, when true, prevents the field from being displayed on the form.

Read Only Section properties are read only.

Hide Nulls When set to true, hides fields within the section which have a null value.

Attributes Description

Settings

Name Name for the field that can be referenced in code as the variable name in which the
fields value is stored

Display Name Label for the field; can be text or a message key.

Help Text The text that appears when hovering the mouse over the help icon.

Type Select the type of field from the drop down list. Select from the following:
Boolean — true or false values field.

Date — calendar date field.

Integer — only numerical values field.

Long — similar to integer but is used for large numerical values.

Identity — specific identity in IdentityIQ field.

Secret — hidden text field.

String — text field
Application — list of existing application
Role — existing type of bundles

Type Settings

Multi-Valued Enable this to have more than one selectable value in this field of the generated
form.

Refresh On Change Boolean that, when true, causes the form to refresh when the fields data value
changes, running any rules or scripts that run on form reload.

Attributes Description
SailPoint IdentityIQ System Administration Guide 43

Working with the Form Editor
Button

Authoritative Enable to have the field value override the current value rather than merge with it.
Applicable only for multivalued attributes.

Required Boolean indicating whether a value is mandatory for the field; required="true"
marks field with * on form to indicate required and prevents form submission
without a value for the field.

Read Only Determine how the read only value is derived:
True — value based on the selection from the drop down list
Rule — value is based on a specified rule
Script — value is determined by the execution of a script

Hidden Boolean that, when true, prevents the field from being displayed on the form.
True — value based on the selection from the drop down list
Rule — value is based on a specified rule
Script — value is determined by the execution of a script

owner The owner of the field/row. This is determined by selecting from the following:
None — no owner is assigned to this field/row
Requester — sets the Owner to this field/row
Rule — use a rule to determine the owner of this field/row
Script — use a script to determine the owner of this field/row

Value Settings

Value Sets the default/initial value for the field/row. This can be overwritten on the form
if the field/row is not marked as Read Only. Select None, Value, Rule or Script
option.

Allowed Values Specifies a set of values from which the user can select to assign the field value.
Automatically created for fields with an allowed values property set to Value (with
a list of values specified) through user interface specification. Select Value, Rule or
Script option.

Validation Ability to specify a script or rule for validating the user's value by selecting None,
Rule or Script.

Attributes Description

Settings

Action Action determines what the system does in response to clicking the associated
button. Select one from the drop down list:
Next — used in the Transition logic to advance the workflow to the next step
Back — used in the Transition logic to return to a previous step or any other
appropriate action for a rejection.
Refresh — save the entered form data and regenerate the form; not a state
transition just a redisplay of the form

Read Only Determines whether to show a button or not on the form renderer.

Attributes Description
44 SailPoint IdentityIQ System Administration Guide

Form Examples
Form	Examples

This section contains examples of XML specifications for the various types of forms.

Application and Role Provisioning Policies and Workflow Forms can all be created through the user interface,
though some advanced features might require XML editing to implement. All form types are recorded as XML
objects that can be edited through the debug pages as needed. This section reviews the form types in their XML
format and shows how they are rendered as a form in the user interface based on that XML definition.

Application	and	Role	Provisioning	Policy

Application provisioning policies are specified as <Form> within the <Application> definition. Role provisioning
polices are <Form> within the <Bundle> definition. Applications might have more than one provisioning policy
form - one for (account) creation, update, and delete provisioning activities plus additional policies for group
creation and update. Roles might only have one for role assignment to an Identity.

This sample <Form> definition provides examples of fields slotted into separate sections, assigned to different
owners by value or by script, with an permitted values set, and with a validation script. Application provisioning
policies are specified within a <Forms> element that wraps all of the specified provisioning policy forms together.

<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE Form PUBLIC "iiq.dtd" "iiq.dtd">
<Form name="New Acct Policy" type="Create">
 <Field displayName="Name" name="name" required="true" reviewRequired="true"
type="string">
 <OwnerDefinition value="IIQApplicationOwner"/>
 </Field>
 <Field displayName="Phone" name="phone" required="true" section="Extra Info"
type="string">
 <OwnerDefinition value="IIQApplicationOwner"/>
 </Field>
 <Field displayName="Office Number" name="off_no" required="true" section=""
type="integer">
 <OwnerDefinition>
 <Script>
 <Source>return identity.getManager();</Source>
 </Script>
 </OwnerDefinition>
 <ValidationScript>
 <Source>
 try {
int number=Integer.parseInt(value);

Skip Validation Determines if client-side required item validation is necessary based on the button
clicked by the user. Validation is required if the button is not configured to skip
validation, the action is NEXT and there are required items.

Label Determines the text displayed on the button.

Parameter Action-parameter of the button.

Value Action-parameter value.

Attributes Description
SailPoint IdentityIQ System Administration Guide 45

Form Examples
if (number < 100) {
return "Office numbers are all 100 or greater.";
} else{
return null;
}
} catch (NumberFormatException e) {
return "Non-numeric value provided; must be numeric.";
}
</Source>
 </ValidationScript>
 </Field>
 <Field displayName="Region" name="region" required="true" type="string">
 <AllowedValues>
 <String>Americas</String>
 <String>EMEA</String>
 <String>APAC</String>
 </AllowedValues>
 </Field>

Application Provisioning Policies can render on multiple forms, depending on the field Owners. Multiple
provisioning policy forms can be combined into one form if a request spans multiple applications or roles that
each need to gather additional data from the same user.

Identity	Provisioning	Policy

The XML below creates an identity provisioning policy which implements many of the available form options,
including:

The form includes multiple field types (: string, object, and secret -. Secret hides enteredthe text). as it is entered.
Object fields are rendered as drop-down list boxes pre-populated with all available items of that type.

• Multi-column configurations

• Multi-column spans for some fields

• Allowed values lists

• Tool tip help prompts

• Field validation (runs when user clicks Submit)

• Filter on object lists for example, show only Manager Identities in Manager drop down list

• Conditional display of sections based on entered field values

• Population of fields based on values entered in other fields

The form includes multiple field types: string, object and secret. Secret hides the text as it is entered. Object fields
are rendered as drop-down list boxes pre-populated with all available items of that type.

 <?xml version='1.0' encoding='UTF-8'?>

<!DOCTYPE Form PUBLIC "sailpoint.dtd" "sailpoint.dtd">

<Form name="Identity Create Policy" type="CreateIdentity">

 <Description>This is the provisioning policy used when creating a new identity thru
LCM.</Description>

 <Section columns="2">

 <Field displayName="First Name" name="firstname" required="true"
reviewRequired="true" type="string"/>
46 SailPoint IdentityIQ System Administration Guide

Form Examples
 <Field displayName="Last Name" name="lastname" postBack="true" required="true"
type="string"/>

 <Field columnSpan="2" displayName="Username" dynamic="true" helpKey="cube name"
name="name" required="true" type="string">

 <Script>

 <Source>

 if ((null != firstname) && (null != lastname)) {

 return (firstname + "." + lastname);

 }

 return null;

 </Source>

 </Script>

 <ValidationScript>

 <Source>

 // validation variable comes in as "value"; messages value returned

 // is displayed on screen below field on validation; success should return

 // empty messages list

 import sailpoint.tools.Message;

 import sailpoint.object.Identity;

 List messages = new ArrayList();

 Identity existing =
(Identity)context.getObjectByName(Identity.class,value);

 if (existing == null) {

 // No Identity found with that name, so return empty messages -

 // validation successful

 return messages;

 } else {

 Message msg = new Message();

 msg.setKey("Username: " + value + " already exists. Modify this name
to make it unique.");

 messages.add(msg);

 return messages;

 }

 </Source>

 </ValidationScript>

 </Field>
SailPoint IdentityIQ System Administration Guide 47

Form Examples
 <Field displayName="Password" name="password" reviewRequired="true"
type="secret"/>

 <Field displayName="Password Confirmation" name="passwordConfirm"
reviewRequired="true" type="secret"/>

 <Field displayName="Employment Type" displayType="combobox" name="status"
postBack="true" type="string">

 <AllowedValues>

 <String>Employee</String>

 <String>Contractor</String>

 </AllowedValues>

 </Field>

 </Section>

 <Section label="Employee Only Fields">

 <Attributes>

 <Map>

 <entry key="hidden">

 <value>

 <Script>

 <Source>

 if ("Employee".equals(status)) {

 return false;

 } else {

 return true;

 }

 </Source>

 </Script>

 </value>

 </entry>

 </Map>

 </Attributes>

 <Field displayName="Manager" filterString="managerStatus == true" name="manager"
type="sailpoint.object.Identity"/>

 <Field displayName="att_email" dynamic="true" name="email" reviewRequired="true"
section="" type="string">

 <Script>

 <Source>

 if (("Employee".equals(status)) && (null != firstname) &&
(null != lastname)) {

 return (firstname + "." + lastname + "@demoexample.com");
48 SailPoint IdentityIQ System Administration Guide

Form Examples
 }

 return null;

 </Source>

 </Script>

 </Field>

 <Field displayName="Location" name="location" reviewRequired="true" type="string"
value="Austin">

 <AllowedValues>

 <String>Austin</String>

 <String>Brazil</String>

 <String>Munich</String>

 <String>London</String>

 <String>Brussels</String>

 <String>San Jose</String>

 <String>Chicago</String>

 <String>Taipei</String>

 <String>Tokyo</String>

 </AllowedValues>

 </Field>

 </Section>

</Form>

Workflow	Form

This example XML creates a custom form that displays the Identity's name and asks the user to select a region
to which the Identity should be assigned. It demonstrates use of an AllowedValuesDefinition and a
ValidationScript as well as Sections of all three types, text, datatable, and default. This form is embedded in the
Workflow XML, as it would be if the form were created through the Business Process Editor Add Form option.
The form could alternatively be created as a standalone form object and referenced as an argument to the
approval, as described in “Workflow Forms” on page 25.

<Step name="Need Region" posX="359" posY="182">
 <Approval name="Need Region" owner="ref:launcher" return="region"
 send="identityName">
 <Arg name="workItemDescription"
 value="string:Fill in Region for $(identityName)"/>
 <Form>
 <Attributes>
 <Map>
 <entry key="pageTitle" value="Get Region"/>
 <entry key="title" value="Need Region for Identity"/>
 </Map>
 </Attributes>
 <Button action="back" label="Abort"/>
 <Button action="next" label="Submit"/>
 <Button action="cancel" label="Return Item to Inbox"/>
SailPoint IdentityIQ System Administration Guide 49

Form Examples

 <Section name='userInstructions' type='text'>
 <Field value="Employees must be assigned to a region. Please provide the
correct region for this employee."
/>
 </Section>

 <Section type="datatable">
 <Field displayName="Employee Name" name="identityName"/>
 </Section>

 <Section name="Edit These Fields">
 <Field displayName="Region Value" name="region" required="true"
 type="String">
 <AllowedValuesDefinition>
 <Script>
 <Source>
 import java.util.ArrayList;
 import sailpoint.api.*;
 import sailpoint.object.*;

 List regions = new ArrayList();
 QueryOptions qo = new QueryOptions();

 qo.setDistinct(true);
 qo.addOrdering("region", true);

 List props = new ArrayList();
 props.add("region");

 Iterator result = context.search(Identity.class, qo, props);
 while (result.hasNext()) {
 Object [] record = result.next();
String region= (String) record[0];
regions.add(region);
 }
 return regions;
 </Source>
 </Script>
 </AllowedValuesDefinition>
 <ValidationScript>
 <Source>
 // validation variable comes in as "value"
 import sailpoint.tools.Message;
 List messages = new ArrayList();
 if(value.length() < 6) {
 Message msg = new Message();
 msg.setKey("New region must be at least 6 characters.");
 messages.add(msg);
 }
 return messages;

 </Source>
 </ValidationScript>
 </Field>
 </Section>
 </Form>
50 SailPoint IdentityIQ System Administration Guide

Form Examples
 </Approval>
</Step>

Report	Forms

Report forms are used to display report-specific filters to the user in the Edit Report window. The form must be
created as an independent Form object and referenced from the report definition in a <ReportForm> element.

At run-time, the form is combined with the Report Form Skeleton, which defines the Standard Properties and
Report Layout pages. Each section named in the form is created as its own Report Properties page, displayed
between the Standard Properties and Report Layout pages. The page name, shown in the Sections list and at the
top of the form, is specified as the Section's label attribute.

 <Form name="Uncorrelated Accounts Report Custom Fields">
 <Section label="Uncorrelated Accounts Parameters" name="customProperties">
<Field displayName="report_input_correlated_apps" filterString="logical==false
&&
authoritative==false"
helpKey="rept_input_uncorrelated_ident_report_correlated_apps"
name="correlatedApps" type="Application" value="ref:correlatedApps"/>
 </Section>
 </Form>

An example of a simple report form is shown below. It contains only one section, formatted in two columns with
several datatypes represented (dates, objects, and boolean). The displayName and helpKey values on this report
are localizable message keys. The values are all pulled from the TaskDefinition's input arguments, if any are
provided there, to set the fields' default values.

<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE Form PUBLIC "sailpoint.dtd" "sailpoint.dtd">
<Form created="1346776069392" id="4028460239921ba40139921bf510019a"
modified="1346776080142"
name="Application Owner Access Review Report Form">
 <Section columns="2" label="rept_cert_custom_section_title"
name="customProperties">
 <Field displayName="rept_cert_field_create_start"
helpKey="rept_cert_help_create_start"
name="createStartDate" type="date" value="ref:createStartDate"/>
 <Field displayName="rept_cert_field_create_end"
helpKey="rept_cert_help_create_end"
name="createEndDate" type="date" value="ref:createEndDate"/>
 <Field displayName="rept_cert_field_signed_start"
helpKey="rept_cert_help_signed_start"
name="signedStartDate" type="date" value="ref:signedStartDate"/>
 <Field displayName="rept_cert_field_signed_end"
helpKey="rept_cert_help_signed_end"
name="signedEndDate" type="date" value="ref:signedEndDate"/>
 <Field displayName="rept_cert_field_due_start" helpKey="rept_cert_help_due_start"
name="dueStartDate"
type="date" value="ref:dueStartDate"/>
 <Field displayName="rept_cert_field_due_end" helpKey="rept_cert_help_due_end"
name="dueEndDate"
type="date" value="ref:dueEndDate"/>
 <Field displayName="rept_cert_field_apps" helpKey="rept_cert_help_apps"
multi="true"
name="applications" type="Application" value="ref:applications"/>
 <Field displayName="rept_cert_field_tags" helpKey="rept_cert_help_tags"
SailPoint IdentityIQ System Administration Guide 51

Form Models
multi="true" name="tags"
type="Tag" value="ref:tags"/>
 <Field displayName="rept_cert_field_cert_group"
helpKey="rept_cert_help_cert_group" multi="true"
name="certificationGroups" type="CertificationGroup"
value="ref:certificationGroups"/>
 <Field displayName="rept_cert_field_show_exclusions"
helpKey="rept_cert_help_show_exclusions"
name="exclusions" type="boolean" value="ref:exclusions"/>
 </Section>
</Form>

This form is rendered as shown in the Report Properties section of the Edit Report window.

In report forms, sections can be created without Field definitions, allowing the report's taskDefinition's
initialization rule/script to create the form fields. Several of the standard reports, for example, use an
initialization rule to generate a pages of Application and/or Identity attribute filters based on the installation's
system data, the defined standard and extended attributes, so the report forms themselves are defined with
empty sections. The Privileged Access Report form provides an example of a dynamically built form.

<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE Form PUBLIC "sailpoint.dtd" "sailpoint.dtd">
<Form created="1346776069939" id="4028460239921ba40139921bf73301b0"
modified="1346776080079"
name="Privileged Access Report Form">
 <Section columns="2" label="rept_priv_access_section_priv_account_attrs"
name="Privileged Account
Attributes">
 <Attributes>
 <Map>
 <entry key="subtitle" value="rept_priv_access_section_instructions"/>
 </Map>
 </Attributes>
 </Section>
 <Section columns="2" label="rept_priv_access_section_account_props" name="Account
Properties">
 <Field columnSpan="1" displayName="rept_identity_roles_field_app"
helpKey="rept_identity_roles_helpN_app" multi="true" name="applications"
type="Application"
value="ref:applications"/>
 </Section>
 <Section columns="2" label="rept_priv_access_section_identity_props"
name="Identity Properties"/>
 <Section columns="2" label="rept_priv_access_section_identity_extended_props"
name="Identity Extended
Properties"/>
</Form>

Form	Models

Form models are used to simplify that process of passing values between the workflow variables and the form.
Form models enable the specification of a Map through which a set of variables can be handed to the form by
the workflow. The model is defined in the workflow (or pre-defined model is used), enabling the workflow and
form to pass a collection of variables at one time through the specified model. The form renderer is set up to use
52 SailPoint IdentityIQ System Administration Guide

Form Models
the model so form fields can name the desired attribute directly without having to reference the model name
as well.

Since actions in workflows often center around Identities, a map for the identity object, called IdentityModel, is
pre-built in IdentityIQ. A workflow library method - getIdentityModel - can be called by a workflow step to create
an IdentityModel map to use in a subsequent step that renders a form. To create an empty map, call this method
with no arguments. To pre-populate the map with an identity's current values, specify an identity name or ID as
an argument to the step. This method is used with no arguments in the new self-service registration workflow
to prepare to create a new identity from the data the user enters on the form.

For an example of the simplification offered by a form model: A workflow form needs to display and permit the
user to edit 10 identity attributes. Without form binding, all 10 would have to be defined as individual business
process variables and all 10 would have to be sent to and returned from the approval in the workflow. The form
would also require all 10 to be defined as form arguments. With a model, the whole Identity can be automatically
stored in a single business process variable with a single method call, only one variable (identityModel) must be
passed to and returned from the form, and no form arguments need to be defined at all.

Use these steps to use the IdentityModel in a workflow form:

1. Go to Setup -> Business Process -> Process Variables tab.

2. Define a process variable in the workflow (identityModel).

3. In an early step in the workflow, initialize and populate the identityModel by calling the getIdentityModel
method in the IdentityLibrary workflow library. Specify the identityModel process variable as the Result
Variable for that step.

To pass an identity name or ID to the method, specify it as an argument to the step (identityName or iden-
tityId).

4. In the approval that contains the form, create an argument called workItemFormBasePath and specify the
identityModel process variable as its value. The form base path is understood by the form renderer and is
automatically applied to permit the form access to the map fields. This enables the passing of the model to
and from the form.

5. Reference the components of the identityModel in the form as though they were passed as individual vari-
ables, for example, as "firstname", not as "identityModel.firstname".

Note: When a base path is specified as a form argument, the form renderer assumes all fields on the
form are accessed through that base path, so all attributes to be included in the form or
returned from it must be included in the model.

<Section>
<Field displayName="user_name" name="name" required="true"
type="string"/>
<Field displayName="first_name" name="firstname" required="true"
type="string"/>
<Field displayName="last_name" name="lastname" required="true"
type="string"/>
<Field displayName="email" name="email" required="true" type="string"/>
…

6. (Optional) To provision changes to the identity based on the form, call the buildPlanFromIdentityModel()
method in the Identity Library. This examines the versions of the model passed to the form and back from
it, identifies differences between them, and creates a provisioning plan to make the required changes.

Refer to the LCM Registration workflow, which ships with IdentityIQ Lifecycle Manager, for a full example of
implementing the identityModel.
SailPoint IdentityIQ System Administration Guide 53

Form Models
No other models currently ship with the product, but custom models can be created through some manual
coding in the initialization stage.

1. Declare the model variable as a process variable (same as the identityModel), for example appModel.

2. Initialize the model manually, since no library method exists to populate custom models. Instead of a
method call in the initialization step, the step executes a script or rule written to populate the desired data
into a HashMap that is stored in the custom model variable.

3. Specify the custom model variable as the workItemFormBasePath argument to the workflow's form step.

4. Reference components in the custom model by name in the form. As with identityModel, no reference to
the base path should be specified in the form field names.

Identity	Model	Structure

The IdentityModel map delivered with IdentityIQ contains the following entries:

• all standard Identity attributes and all extended Identity attributes (most as strings; lists when
multi-valued)

• detectedRoles (List)

• assignedRoles (List)

• manager (String name, rather than ID

• info map which contains:

- omanager map (includes ID, name, and displayName of Manager Identity)

• lastRefresh, lastLogin, and passwordExpiration dates

• isWorkgroup, managerStatus, correlated, and correlatedOverriden flag values

• assignedScope name and controlsAssignedScope flag value

• transformerOptions (map of primer identityName or identityId used to populate the IdentityModel)

• class (sailpoint.object.Identity)

• transformerClass (sailpoint.transformer.IdentityTransformer)

Accessing	Identity	Model	Attributes

Any identity model attributes can be displayed on a form or set based on data entered in a form field by supplying
the model attribute name as the field name.

Access any single-valued attribute at the top level by specifying its name in the field's name attribute:

<Field displayName="first_name" name="firstname" type="string"/>

To display the contents of a multi-valued extended identity attribute, use the following syntax. Multi-value
extended identity attributes are shown in the identityModel as a list of string values.

<Field displayName="Cost Centers" multi="true" name="costcenter" type="string"/>

Access any nested attribute, for example, those with a map within the map, using dot notation:

<Field displayName="Manager ID" name="info.manager.id" type="string"/>

Note: Values in the info map should not be altered through the form, as they will not be updated in
the model; they are treated as read-only data that provides supplementary data for the
corresponding top-level attribute, and they are automatically refreshed based on updates to
that top-level attribute.
54 SailPoint IdentityIQ System Administration Guide

Form Models
Display the contents of an object list in the map, such as assignedRoles, detectedRoles, or workgroups, on a form
by creating it as a combo box. Do this by specifying the type as the correct object type and specifying
multi="true":

<Field displayName="Detected Roles" filterString="type=='it'" multi="true"
name="detectedRoles" type="iiq.object.Bundle"/>

<Field displayName="WorkGroups" filterString="workgroup == true" multi="true"
name="workgroups" type="Identity"/>

The application of a filterString to the workgroups list ensures that only workgroup identities display.

The links list contains a map for each link (account) held by the identity. Access attributes inside that list by
referencing the name of the desired link and using dot notation to traverse the map:

<Field displayName="App Owner" name="links['HR_Employees'].sys.nativeIdentity"
type="string"/>

In development and debugging, it can be helpful to examine the identityModel in XML or as a string
representation to clearly see its structure. The identityModel is visible in the workflowCase for any workflow
where it is used and is printed to stdout if the trace variable is set to true for the workflow. It can be printed as
a string from a workflow step with a System.out.println(identityModel.toString()); statement.

Referencing	a	Form	Model

Form models can be accessed by rules and scripts within workflows or forms within workflows using the $()
parsing tokens, for example, $(identityModel.name). When variables are referenced with this syntax, the
ScriptPreParser expands the short hand path references into the proper MapUtil.get() reference. This
notation can be used in scripts run from fields, variables, steps, transitions or step actions. The script can
explicitly specify the full path to the variable in the model, for example, $(identityModel.name), or it can
reference the variable directly when a modelBasePath has been defined, for example $(name).

Note: In order to set a basePath in a form, an argument named modelBasePath (defined as
Rule.MODEL_BASE_PATH) must be set declaring the path to be used for all the expanded
variables in the form. For example, <Arg name='modelBasePath' value='identityModel'/>. The
modelBasePath does not have to be specified at the top level; for example, it can point to a list
or map within the top-level map such as <Arg name='modelBasePath'
value='identityModel.links[AD]'/> (this is the map representing the user's AD account link).

Note: This $() notation can only be used for retrieving values from the model, it cannot be used to set
or change values in the model.
SailPoint IdentityIQ System Administration Guide 55

Form Models
Syntax

Use the following syntax rules when writing references within the scripts:

• A dollar sign with parentheses [$()] is used as the parsing token to indicate what contents should be
expanded. For example, $(foo.bar).

• Double quotes are valid when enclosing spaces within the variable: $(foo."bar baz"). However an
expansion token within a quoted string is not processed: "$(not.expanded)".

• Brackets can be used within a variable to access elements in a list: $(foo.bar[baz=bingo].buzz)
$(foo.bar[baz="path with spaces"].buzz)

• When the modelBasePath is set to a sub-map or list within the model, the forward slash escape character
(/) can be used to jump to the root of the basePath. This escape character must be the first character
after the expansion token. If basePath is set to 'identityModel.links[AD]' and the desired reference is for
identityModel.firstname the variable would be written as $(/firstname) which would be converted
to iiq.tools.MapUtil.get(identityModel, "firstname"). Otherwise $(firstname) is
converted to iiq.tools.MapUtil.get(identityModel, "links[AD].firstname").

• If no basePath is set and the variable only contains a single word, no expansion occurs and a warning is
written to the log indicating a possible error condition.

Example	Syntax

The following are all valid:

No base path:

• $(foo.bar) —> iiq.tools.MapUtil.get(foo, "bar")

• $(foo."bar baz") —> iiq.tools.MapUtil.get(foo, "\"bar baz\"")

• $(foo.bar[baz="path with spaces"].buzz)—> iiq.tools.MapUtil.get(foo,
"bar[baz=\"path with spaces\"].buzz")

Base path = ‘foo’

• $(foo.bar) —> iiq.tools.MapUtil.get(foo, "bar") (assuming basePath is set to 'foo'. This
respects the basePath and does not try to find a "foo" attribute within the "foo" map)

• $(bar)—> iiq.tools.MapUtil.get(foo, "bar") (assuming basePath is set to 'foo')

Base path = ‘foo.bar[AD]’

• $(baz)—> iiq.tools.MapUtil.get(foo, "bar[AD].baz") (assuming basePath is set to
'foo.bar[AD]')

• $(/baz)—> iiq.tools.MapUtil.get(foo, "baz") (assuming basePath is set to 'foo.bar[AD]')
56 SailPoint IdentityIQ System Administration Guide

Identity Risk Score Configuration
Chapter	3:	Configure	Risk	Scoring
Use the risk scoring configuration pages to define the algorithms used by IdentityIQ to determine risk scores for
identities and applications within your organization. Risk scores are used throughout the product to highlight high
risk users and accounts and to trigger notices when configured to do so.

To access Risk configuration options, go to Identities -> Identity Risk Model or Application -> Application Risk
Model. Configuring risk scoring requires the assignment of administrative capabilities within IdentityIQ.

To configure risk scoring for identities and applications refer to following:

• "Identity Risk Score Configuration" on page 57

• "Application Risk Score Configuration" on page 61

Identity	Risk	Score	Configuration

IdentityIQ uses a combination of base access risk and compensated scoring method to determine the overall
Identity Risk Scores, or Composite Risk Score, used throughout the product. You configure Baseline Access and
Composite risk scoring for applications by navigating to the Define > Application Risk Model area of the product
interface.

Base access risk is a measure of inherent user access risk. Base risk scores are set on each role, entitlement, and
policy defined. This type of score ranges from 0 (lowest risk) to 1000 (highest risk). The account weight assigned
to any additional entitlements that are assigned to an identity also have an impact base risk scores. Account
weights are factored in to the entitlement baseline access risk scores.

IdentityIQ applies a series of compensating factors to each base risk score to calculate compensated scores. These
compensated scores are then weighted using a maximum contribution percentage and combined to form an
overall Composite Risk Score for each user.

The compensating factors and weighted values enable IdentityIQ to accurately identify high-risk users based on
more than just the roles they are assigned within your enterprise.

For example, a user assigned only low risk roles might be considered high risk if they have never been included
in a certification process or the roles they do have are in violation of separation of duty policies.

Scoring	Definitions

There are a number of scores, or types of scores, that contribute to the overall Identity Risk Score, or Composite
Risk for each IdentityIQ user. The basic scores that are used to determine the overall score are:

Table 1—Access Risk Scoring Definitions

Score Definition

Base Risk Score The score assigned to each role, entitlement, or policy violation.

Total Base Risk Score The total score of all base risk scores of the same component type on a per user
basis.
For example, add the base risk scores for all roles assigned to a specific user
together to determine the role total base risk score.
SailPoint IdentityIQ System Administration Guide 57

Identity Risk Score Configuration
Use the sliding bars or manually enter a value, to define scoring on each panel.

Use the following tabs to create risk score factors for your enterprise:

• Baseline Access Risk Tab — apply base risk scores to roles, entitlements and policy violations. See
"Identity Baseline Access Risk Tab" on page 58.

• Composite Scoring Tab — apply compensating factors to base risk scores. See "Identity Composite
Scoring Tab" on page 60.

Identity	Baseline	Access	Risk	Tab

The Baseline Access Risk score is a measure of inherent risk. A user's Baseline Access Risk score rarely changes
because their role within the enterprise is the primary factor in defining the score. This type of score ranges
from 0 (lowest risk) to 1000 (highest risk).

Select one of the following options to define how IdentityIQ calculates base access risks. Each role, entitlement,
and policy violation is assigned a score that falls into a band. The number of bands is configured on the Advanced
Configuration page and applies to the entire IdentityIQ application.

• “Role Baseline Access Risk” on page 58

• “Entitlement Baseline Access Risk” on page 59

• “Policy Violation Baseline Access Risk” on page 59

To configure baseline access risk scores for role, entitlement, and policy violation access, navigate to the
Define > Identities Risk Model area of the product interface and select the Baseline Access Risk tab.

Role	Baseline	Access	Risk

Role Baseline Access Risk score is calculated based on the roles correlated to the identity. This list contains every
role defined in IdentityIQ. To limit the number of items displayed in the list, filter the list by role name and type.

Compensated Risk Score The value of the base risk score for a component multiplied by the
compensating factor for that component type.

Total Compensated Risk
Score

The Total Base Risk Score for a specific component type multiplied by the
Compensated Risk Score for that component type.

Composite Risk Score or
Identity Risk Score

The overall risk score for a user after the composite weighing, or maximum
contribution to total score factor, is applied to the total compensated risk scores
for each component.
The time since the last certification was performed on the user is also figured
into this score with the total compensated scores for role, entitlement, and
policy violation.

Table 2— Role Baseline Access Risk Configuration Column Descriptions

Column Description

Name The name of the role.

Type The role type as defined when the role was modeled.

Description The description of the role as defined when the role was modeled.

Table 1—Access Risk Scoring Definitions

Score Definition
58 SailPoint IdentityIQ System Administration Guide

Identity Risk Score Configuration
Click on a role to display the configuration panel to see the role details and set or modify the risk level. Use the
slider control to set the risk level or enter a value in the field on the right.

Entitlement	Baseline	Access	Risk

Entitlement Baseline Access Risk score is calculated based on the additional entitlements correlated to an
identity. Additional entitlements are entitlements that are assigned to a user, but are not part of any of the roles
assigned to that user.

Entitlements fall into two categories: Permissions and Attributes. A Permission is a privilege, such as create, read,
update, delete, and execute. Attributes are customized user characteristics made up of an attribute/value pair,
such as group/Administrators. A risk score is configured for each Permission and Attribute/Value pair in the
system. A user's Entitlement BAR score is determined by summing the risks associated with each of the additional
entitlements that they hold.

Use this page to add applications to the list and to work with the entitlements on each. The Entitlement Baseline
Access Risk Configuration page contains the following information:

To add an application to the list, select an application from the drop-down list on the bottom of the page. The
list contains all of the application configure to work with IdentityIQ that are not currently on the list. Use the
Permissions and Attributes columns to add entitlements to applications for risk tracking.

Policy	Violation	Baseline	Access	Risk

Policy Violation Baseline Access Risk score is calculated using policy violations that are detected for a user based
on defined policy rules. A risk score is configured for every rule in each policy or for the policy if no rules apply.
This score is calculated by taking the sum of the risks associated with every policy or rule that the user violates.

Risk Level The current risk level assigned to the role.

Table 3— Entitlement Baseline Access Risk Configuration Column Descriptions

Column Description

Application The name of the application with which the entitlements are associated.

Account Weight The default score assigned to any identity that is assigned entitlements on this
application. Account Weight scores are not compensated.
This score is not applied to the identity risk score if the entitlements assigned to the
user are, either all used as part of roles assigned to the user, or if the risk score for all
of the entitlements assigned to the user are zero based on certification rules.

Permissions Click in this column to modify the weight assigned to the permissions for the
associated application.
Use the sliding bar or enter a value in the field on the right to modify permission
weight.

Attributes Click in this column to add, delete or modify the weight assigned to the attributes for
the associated application.
Select an attribute from the drop-down list, type an attribute name, and click Add to
assign a weight to a new attribute, or modify and existing attribute in the list.
Select an attribute using the check-boxes on the left and click Delete to remove an
attribute from the list.

Table 2— Role Baseline Access Risk Configuration Column Descriptions

Column Description
SailPoint IdentityIQ System Administration Guide 59

Identity Risk Score Configuration
Use the Policy Violation Baseline Access Risk page to view and modify the risk level associated with each policy
or policy rule defined. The page is divided into tables based on policy type. If the policy does not contain rules,
set the risk level for the entire policy. Use the slider or type a value in the field to the right.

Identity	Composite	Scoring	Tab

Use the Composite Scoring tab to assign value to the compensating factors for each base component used to
calculate the composite risk scores for users. You can also define the maximum contribution of each component
to the total score. The maximum composite risk score is 1000. Use the Maximum Contribution to Total Score
value to control the impact of compensated scores on composite scores.

Use the Composite Scoring tab to define the maximum impact of a total compensated score on a user's
Composite Risk Score. For example, if the time since the last certification on an identity is considered low risk,
you can set the Certification Age to a low value, such as 20% so that even at its maximum value that component
only contributes 200 points of the total 1000. If, however, policy violations are considered high risk, you can set
the Separation of Duty Violation Compensated Score to 100% so that policy violations move users into the
high-risk category quickly.Use the Composite Scoring tab to define the maximum impact of a total compensated
score on a user's Composite Risk Score.

Table 4— Identity Composite Scoring Configuration

Category Compensating Control

Role
Compensated
Score

Based on applying the following compensating factors to each role base score:

The user's role has never been certified before

The user's role is approved

The user's role was allowed as an exception

An allowed exception on the user's role has expired

Revocation of the user's role is pending

Activity monitoring is enabled on one or more applications associated with the user's
role

Entitlement
Compensated
Score

Based on applying the following compensating factors to each entitlement base
score:

The user's entitlement has never been certified before

The user's entitlement is approved

The user's entitlement was allowed as an exception

An allowed exception on the user's entitlement has expired

Revocation of the user's entitlement is pending

Activity monitoring is enabled on one or more applications to which the user's
entitlement applies
60 SailPoint IdentityIQ System Administration Guide

Application Risk Score Configuration
To configure composite risk scoring for identities, navigate to the Define > Identity Risk Model area of the product
interface and select the Composite Scoring tab.

Application	Risk	Score	Configuration

IdentityIQ uses a combination of Component and Composite scoring to determine the overall application risk
scores used throughout the application. You configure Component and Composite risk scoring for your
applications by navigating to the Define > Application Risk Model area of the product interface.

All scores are calculated by first determining the percentage of accounts that have the qualities tested by the
component score. For example, if 10 out of 100 accounts are flagged as service accounts, then the raw
percentage is ten percent (.10). This number is then multiplied by a sensitivity value which can be used to
increase or decrease the impact of the original percentage. The default sensitivity value is 5 making the adjusted
percentage fifty percent (.50). This final percentage is then applied to the score range of 1000 resulting in a
component score of 500.

After the component score is calculated a weight, or compensating factor, is applied to each component score
to determine the amount each contributes to the overall risk score for the application. The resulting score is the
composite score. For example, a few violator accounts might increase risk more than many inactive accounts.

To view the currently configured risk information for an application, go to Application Definition page, click on a
listed application, and then select the Risk tab.

Policy Violation
Compensated
Score

Based on applying the following compensating factors to policy base score:

The user's violation has never been certified before

The user's violation was allowed

An allowed exception on the user's policy violation has expired

The user's policy violation remains uncorrected

Activity monitoring is enabled on the applications on which the user's violation
occurred

Certification Age
Score

Based on applying the following compensating factors to an expired certification:

The risk score starts increasing this many days after the latest certification

The risk score reaches its maximum value this many days later

Inactive User
Score

looks for inactive users. When this score is enabled any identity is found to be inactive,
a default risk score of 500 is assigned for this score component

Table 4— Identity Composite Scoring Configuration

Category Compensating Control
SailPoint IdentityIQ System Administration Guide 61

Application Risk Score Configuration
Use the following tabs to create risk score factors for your enterprise:

• Baseline Access Risk Tab — apply base risk scores to roles, entitlements and policy violations. See
"Application Component Scores Tab" on page 62.

• Composite Scoring Tab — apply compensating factors to base risk scores. See "Application Composite
Score Tab" on page 62.

Application	Component	Scores	Tab

Use the Component Scores tab to define the values for each account or component.

Service, Inactive, and Privileged component scores look for links that have a configured attribute. For example,
the component service with a configured value true.

The Dormant Account score looks for a configured attribute that is expected to have a date value, for example
lastLogin. This algorithm has an argument, daysTillDormant, that defaults to thirty (30). If the last login
date is more than thirty (30) days prior to the current date, the account is considered dormant and is factored
into the risk score.

The Risky Account score looks for links whose owning identity has a composite risk score greater than a
configured threshold. The default threshold is five hundred (500).

The Violator Account score looks for links whose owning identity has a number of policy violations greater than
a configured threshold. The default threshold is ten (10).

Note: If you check Disabled, the component is not used to determine the application risk score.

To configure component risk scoring for applications, navigate to the Define > Application Risk Model area of the
product interface and select the Component Scores tab.

Application	Composite	Score	Tab

Use the Composite Scoring tab to apply a weight or compensating factor for each component. Specify the
percentage of contribution for the component scores.

To configure composite risk scoring for an application, navigate to the Define > Applications Risk Model area of
the product interface and select the Composite Score tab.
62 SailPoint IdentityIQ System Administration Guide

Configuring Partitioning Request Objects
Chapter	4:	Partitioning
Note: Partitioning is not available on all task or certifications. Partitioning is available for Account

Aggregation, Identity Refresh, and Manager Certification generation.

Note: Partitioning is not available on all application types. Partitioning is controlled by both the
configuration of the applications you are using and the configuration of the connectors used to
communicate with those applications.

Partitioning is used to break operations into multiple pieces, or partitions. Each partition is then placed in a global
queue, and machines, or hosts, in a cluster compete to execute the partitions in the queue. Machines are added
or removed from the cluster dynamically with automatic balancing. If a machine fails or is taken down while
processing a partition, the partition is placed back into the queue and reassigned to a different machine. A single
result object is shared by all partitions and is continually updated so you can monitor the overall progress of the
partitioned operation. When all partitions have finished executing the result is marked complete.

Each instance of IdentityIQ includes a Server object containing information about what is happening in that
instance. For machines running multiple instances of IdentityIQ, you must give each instance must be assigned
a unique iiq.hostname and have a unique Server object.

The Server objects include a heartbeat service and is updated by a new system thread on a regular basis. By
monitoring server heartbeats, machines in the cluster can detect when another machine fails. When this
happens any partitioned requests that were running on that machine are restarted and picked up by a different
machine in the cluster, so that failure of one machine does not terminate an entire long running task.

Server objects include some statistics, such as the number of request threads currently active and the request
types that are executing. You can view the state of the machines in your cluster on the Administrator Console
page. Refer to the SailPoint IdentityIQ System Administration Guide for more information.

To activate partitioning you must have applications configured for partitioning, connectors configured to work
with those applications, and you must enable partitioning when defining an account aggregation or identity
refresh task, or scheduling a manager certification.

• Applications are configured as part of the Account Settings on the Configuration tab of the Application
Configuration page, see SailPoint IdentityIQ Application Configuration Guide.

• Connector configuration information is located in the latest SailPoint Integration Guide.

• Account Aggregation and Identity Refresh information is located in “Account Aggregation” on page 78
and “Identity Refresh” on page 93.

• Scheduling Manager Certification information is located in the SailPoint IdentityIQ User’s Guide or the
online help.

Configuring	Partitioning	Request	Objects

Partitioning is also maintained using RequestDefinition objects that are defined for each request type. These
objects control how each request-type is processed. For example, these objects define the number of threads
that run for each request on the instances of IdentityIQ running on a specific machine. The RequestDefinition
objects must be defined on each machine, host, in a cluster.

Note: By default the maximum number of threads to run on each host is set to 1. This number can be
changed to maximize performance in your environment, but should be done with caution and
only after testing and tuning for your environment.
SailPoint IdentityIQ System Administration Guide 63

Configuring Partitioning Request Objects
The following RequestDefinition objects are available:

• Aggregation Partition— define the maximum number of threads to run on each host during account
aggregations

• Identity Refresh Partition — define the maximum number of threads to run on each host during identity
refresh

• Manager Certification Generation Partition — define the maximum number of threads, the error action,
and orphan action for partitioned manager certification requests

• Role Propagation Partition — define the maximum number of threads to run on each host during role
propagation

To work with the RequestDefinition objects, go to the IdentityIQ Debug page and select RequestDefinition from
the Select an Object drop-down list.
64 SailPoint IdentityIQ System Administration Guide

Tasks Page
Chapter	5:	Tasks
Note: When working with tasks, do not open multiple tabs or browsers. Opening multiple tabs might

cause a change in one tab to overwrite changes made in another.

Task are used to automate the processes which build, update, and maintain the information contained within
IdentityIQ. Use the basic tasks provide by SailPoint, or create and customize the task to meet the needs of your
organization.

Account aggregation tasks scan applications configured to work with IdentityIQ, discover users and entitlements
on those applications, and, optionally, correlate those users and entitlements with roles.

Account group aggregation tasks are used to scan applications and aggregate account groups and application
object attributes. These are then used for group certification (either permissions or membership) or for
displaying of group information in identity certifications.

Activity aggregation tasks scan applications, discover activity, and then correlate that activity with identities
enabling you to track and monitor all activity for possible policy violations.

Activity Alert tasks aggregate and process alerts defined in your system. The aggregation tasks collects active
alerts and, either launches an activity processing task to launch the associated actions, or stores the alerts until
the next processing task is run.

Identity refresh tasks analyze the information collected for each identity to ensure that it is up-to-date and
accurate. Among other things, identity scans can detect and report on policy violations and trigger event
certifications.

Application score refresh tasks scan the specified applications and run the configured application scoring
algorithms to determine application risk score. These scores are then used to update the information displayed
on the Application Risk Scores page.

Missing Managed Entitlement Scan creates any entitlement objects for items added after the application was last
aggregated.

Policy Scan tasks evaluate policies against identity cubes and update identity score cards with any policy
violations discovered.

Refresh Composite Accounts tasks refresh composite accounts for all identities that could, potentially, have a
composite account on the applications selected.

System tasks are configured, by default, to run in the background and perform maintenance, refresh
system-wide data, and cleanup old or unused information.

Target aggregation task are used to scan applications for unstructured targets.

Access to components is controlled by IdentityIQ Capabilities and scope. Talk to your system administrator if you
need access to additional components.

Tasks	Page

The Tasks page contains a list of all of the tasks that have been created. The first time you access the Task page
you see the predefined tasks provided by SailPoint. The tasks are grouped into categories based on the task type.
You can expand or contract the categories on the grid using the plus (+) or minus (-) icon next to the category
name.
SailPoint IdentityIQ System Administration Guide 65

Tasks Page
Note: Task category headings are only displayed if a task exists in that category.

The task categories are:

• Account Aggregation

• Account Group Aggregation

• Activity Aggregation

• Activity Alerts

• Certification Refresh

• Generic

• Identity

• Scoring

• System

• Target Aggregation

See “Predefined Tasks” on page 66.

Use the search options to limit the number of tasks displayed in the table. Entering a letter, or partial name, in
the Search field displays any tasks with names containing that letter pattern.

Use this page to create, edit, run, schedule or delete task.

See “Working with Tasks” on page 68.

The Tasks page contains the following information:

Predefined	Tasks

SailPoint provides a number of predefined tasks that can be run to aggregate, correlate and refresh information
within your enterprise.

Note: The predefined tasks are not templates that can be used to create new tasks. Changes made to
these tasks overwrite exiting information. To create new task you must use the New Task
drop-down menu at the bottom of the page.

Note: These tasks are defined to perform specific functions within your enterprise. Deleting or
altering these tasks might have negative affects on the performance of IdentityIQ.

SailPoint provides the following tasks:

Table 5—Tasks Page field descriptions

Field Name Description

Name The name of the task as defined when the it was created.

Description A brief description of the specific task.
66 SailPoint IdentityIQ System Administration Guide

Tasks Page
Generic Tasks:

• Refresh Role Indexes — Update all role information and create the indexes needed to perform role
searches. You must run this task before performing any role searching.

Identity Tasks:

• Check Active Policies — Scan all users for policy violations and update Identity Risks Scores. Edit this task
to specify how policy violations are handled when detected.

• Prune Identity Cubes — Delete identities that have no account links and have no important references.
Identities in any of the following states are protected:

- Marked protected

- Is a manager (managerStatus flag true)

- Has capabilities

- Bundle, Application, Workitem, or TaskResult owners

- Work item requestor

- Application secondary owner

- Application remediator

- Creator of a MitigationExpiration
If the protectIfCertifying option is on, identities are protected if they are in an active certification. There is
also an option to run the scan for analysis but not delete any identities.

• Refresh Entitlement Correlation — Scan all user entitlements and applications to update role
assignments.

• Refresh Groups — Scan all users and update the group indexes for all identity groups.

• Refresh Identity Cube — Perform a full refresh of the identity cubes for all users. Edit this task to specify
which portions of the identity cubes are refreshed by this task.

• Refresh Risk Scores — Scan all users and update the Identity Risk Scores for each.

Scoring Tasks:

• Refresh Application Scores — Runs the scoring algorithms against all specified applications and updates
the Application Risk Scores page.

• Refresh Role Scorecard — Analyzes each role in the system and collects statistics about them.

System Tasks:

• Check Expired Mitigations — Scans all users for temporary exceptions allowed in a certification that have
now expired. The original certifier can optionally be notified when allowed exceptions expire.

• Check Expired Work Items — Scans all work items looking for those that need to be canceled or escalated
to a different user.

• Complete Orphaned Identity Requests — Removes completed requests for roles that exist in your
system.

• Effective Access Index Refresh — Refreshes or rebuilds the effective access index.

• Full Text Index Refresh — Builds and refreshes the index files used for full text searches on defined fields
on the access request pages of the Lifecycle Manager. The index files are rebuilt each time this task is run.

• Perform Identity Request Maintenance — Prunes old identity request objects and scans unverified
access requests to check for provisioning completeness.

• Perform Maintenance — Prunes identity snapshots, task results, and certifications, escalates orphaned
work items, and performs other background maintenance tasks.
SailPoint IdentityIQ System Administration Guide 67

Working with Tasks
Note: Electronically signed objects are not affected by this task.

• Remove Orphan Role Requests — Stops and removes requests for roles that no longer exists in your
system. For example, if the sunset date for a role passes before the request is processed, this task
removes that request.

• Role Overlap Analysis — Performs impact analysis on a specified role. The task result name is annotated
with the name of the selected role so you can tell multiple analysis results apart.

• Synchronize Roles — Synchronizes IdentityIQ roles with the roles on the identity management systems
that are configured to work through a provisioning provider.

Working	with	Tasks

To run or execute a task, right-click on the task name and select Execute or Execute in background. Execute
displays a pop-up progress window and opens the Task Result page when it is complete. Execute in background
launches the task in the background and you must go to the Tasks Results page to track progress or view the
finished task.

See “Task Results” on page 73.

Tasks that require sign off generate work items and email notifications that are assigned to the designated
signers. Sign off decisions are retained with the task results for tracking purposes.

See “How to Complete Task Work Items” on page 104.

To create a new task, use the Create new task drop-down list to select a task type and display the New Task page.

Note: The predefined tasks are not templates that can be used to create new tasks. Changes made to
these tasks overwrite exiting information. To create new task you must use the Create New
Task drop-down menu at the bottom of the page.

See “How to Create a New Task” on page 68.

To edit an existing task, click a task or right-click and select Edit to display the Edit Task page.

See “How to Edit a Task” on page 70.

To schedule a task, right-click and select Schedule from the drop-down list to display the New Schedule dialog.
You can schedule task to run once, hourly, daily, weekly, monthly, quarterly or annually to meet the
requirements of your enterprise and auditors. Go to the Scheduled Tasks tab to view or edit existing schedules.

See “How to Schedule a Task” on page 71 and “Scheduled Tasks” on page 72.

To terminate a currently running task, access the Task Results page, right-click on the task to terminate and select
Terminate from the drop-down menu. You are asked to confirm the termination request. Task that are currently
running are flagged as pending in the Date Complete column of the Task Results table.

To delete a task, right-click the task and select Delete from the drop-down menu. Click Yes on the confirmation
pop-up to delete the task. When you delete a task from the Tasks table, all associated task results are deleted
as well.

How	to	Create	a	New	Task

Use the New Task page to create a task based on the task types provided. Tasks can be as general or specific as
required.

See “Task Types” on page 75 for the complete list of tasks types provided.
68 SailPoint IdentityIQ System Administration Guide

Working with Tasks
1. Click or mouse over the Setup tab and select Tasks to open the Tasks page.

2. Select a task type from the New Task drop-down list to open the New Task page.

3. Enter a Name and brief Description for the new task. This information is displayed on the Tasks table when
the new task is saved.

4. Select a Previous Result Action from the drop-down list. Delete is select by default.
Previous result actions determine how subsequent runs of this tasks react to existing task results.

Delete — overwrite the previous task results with the new information.

Rename Old — append a numeral to the name of the old task result and preserve both.

Rename New — append a numeral to the name of the new task result and preserve both.

Cancel — cancel the new run of the task.

5. Optional: Allow concurrency. Select Allow Concurrency to enable two identical tasks to run at the same
time.
If enabled, allow concurreny appends a numeric value to the name of the task that started second.

If disabled, the second task is canceled and an exception sent to the requestor.

6. Optional: Require sign off.
a. Select Required sign off to expand the Signoff Properties section.
b. Select an email notification template from the Initial Notification Email drop-down list. For

example, the Task Result Signoff template.
Templates are created and defined when the application is configured.

c. Specify the escalation criteria for the sign off request. Use the options displayed to set your
escalation parameters.
None — no reminder emails are sent and no escalation is performed for this work item.
Send Reminders — email reminders are sent at the configured interval.
Reminders then Escalation — the configured number of reminders are sent and then the work
item is escalated to the signers manager.
Escalation only — this work item is escalated after the configured interval with no reminders being
sent.

d. Specify the required signers.
Enter the first letter, or letters, of an identity or workgroup to display a selection list of valid
identities or workgroups containing that letter string or click the arrow to the right of the field to
display all identities and workgroups and select a signer.
You can add as many signers as required.

7. Optional: Host.
If you want to choose a specific host or set of hosts to run the task on, add a comma separated list of host
names. If multiple hosts are specified, the task manager selects the first active host If there are no active
hosts, or if an incorrect host name is given, the task terminates, and an error message is left in the result.

8. Optional: Email task alert.
Specify the configuration parameters in order to receive the status of different tasks after completion. These
settings overwrite the email notification configured at the IdentityIQ Configuration level setting.

• Email Notification: Select Email Notification to enable the sending of status of task to those recipient
whose email is being registered to receive the task status. Use the options displayed to set your
notification.

Disabled — no email notification would be sent.

Warning — email notification would be sent in case of any warning after completion of task.

Failure — email notification would be sent in case of task Failure.
SailPoint IdentityIQ System Administration Guide 69

Working with Tasks
Always — email notification would be sent at completion of task irrespective of the task status.

• Email Notification Template: (Applicable only if Disabled is not selected) Select Task Status template to
send emails on task completion. Templates are customizable.

• Email Recipients: (Applicable only if Disabled is not selected) Select the identity to register them to
receive task status notification on emails associated with it.

9. Specify the task options required for the task you are creating. Each task type displays unique task options.
See “Tasks Page” on page 65 for details on each type.

10. Click Save to save the new task to the Tasks table.
— OR —

Click Save and Execute to save the task to the Tasks table and run it immediately.
The Tasks Results page displays when the task completes.

See “Task Results” on page 73.

How	to	Edit	a	Task

Use the Edit Task page to make changes to an existing task.

Note: There is no Save As function on the Edit Task page. Any changes made to an existing task
overwrite the task you are editing. You must use the Create New Task drop-down menu to
create a new task.

Procedure

1. Click or mouse over the Monitor tab and select Tasks to open the Tasks page.

2. Click on a task, or right-click on a task and select Edit from the drop-down list to open the Edit Task page.

3. Edit the Name and Description section as needed.

Note: Changing the name does not save this as a new task and preserve the task being edited.
Anything entered here overwrites the existing information.

4. Select a Previous Result Action from the drop-down list. Delete is select by default.
Previous result actions determine how subsequent runs of this tasks react to existing task results.

Delete — overwrite the previous task results with the new information.

Rename Old — append a numeral to the name of the old task result and preserve both.

Rename New — append a numeral to the name of the new task result and preserve both.

Cancel — cancel the new run of the task.

5. Optional: Allow concurrency. Select Allow Concurrency to enable two identical tasks to run at the same
time.
If enabled, allow concurreny appends a numeric value to the name of the task that started second.

If disabled, the second task is canceled and an exception sent to the requestor.

6. Optional: Require sign off.
a. Select Required sign off to expand the Signoff Properties section.
b. Select an email notification template from the Initial Notification Email drop-down list. For

example, the Task Result Signoff template.
Templates are created and defined when the application is configured.

c. Specify the escalation criteria for the sign off request. Use the options displayed to set your
escalation parameters.
None — no reminder emails are sent and no escalation is performed for this work item.
Send Reminders — email reminders are sent at the configured interval.
70 SailPoint IdentityIQ System Administration Guide

Working with Tasks
Reminders then Escalation — the configured number of reminders are sent and then the work
item is escalated to the signers manager.
Escalation only — this work item is escalated after the configured interval with no reminders being
sent.

d. Specify the required signers.
Enter the first letter, or letters, of an identity or workgroup to display a selection list of valid
identities or workgroups containing that letter string or click the arrow to the right of the field to
display all identities and workgroups and select a signer.
You can add as many signers as required.

7. Optional: Host.
If you want to choose a specific host or set of hosts to run the task on, add a comma separated list of host
names. If multiple hosts are specified, the task manager selects the first active host If there are no active
hosts, or if an incorrect host name is given, the task terminates, and an error message is left in the result.

8. Optional: Email task alert.
Specify the configuration parameters in order to receive the status of different tasks after completion.
These settings overwrite the email notification configured at the IdentityIQ Configuration level setting.

• Email Notification: Select Email Notification to enable the sending of status of task to those recipient
whose email is being registered to receive the task status. Use the options displayed to set your
notification.

• Disabled — no email notification would be sent.

• Warning — email notification would be sent in case of any warning after completion of task.

• Failure — email notification would be sent in case of task Failure.

• Always — email notification would be sent at completion of task irrespective of the task status.

• Email Notification Template: (Applicable only if Disabled is not selected) Select Task Status template to
send emails on task completion. Templates are customizable.

• Email Recipients: (Applicable only if Disabled is not selected) Select the identity to register them to
receive task status notification on emails associated with it.

9. Edit the task options required for the task you are creating.
Each task type displays unique task options.
See “Task Types” on page 75 for details on each type.

10. Click Save to save the new task to the Tasks table.
— OR —

Click Save and Execute to save the task to the Tasks table and run it immediately.
The Tasks Results page displays when the task completes.

See “Task Results” on page 73.

How	to	Schedule	a	Task

Use the New Schedule dialog to schedule tasks to run during times of low business activity. Schedule recurring
tasks as needed to maintain routine compliance within your enterprise.

The New Schedule dialog enables you to assign a unique name and description to the task schedule. This
information is stored on the Scheduled Tasks page and displays in the Task Results table.

See “Scheduled Tasks” on page 72 and “Task Results” on page 73.

Procedure

1. Click or mouse over the Monitor tab and select Tasks to open the Tasks page.
SailPoint IdentityIQ System Administration Guide 71

Scheduled Tasks
2. Right-click on a task name and select Schedule from the drop-down list to open the New Schedule dialog.

3. Enter a unique name and description for this schedule task.

Note: Task that run across time zones run at the time scheduled, relative to the time zone in which
they are scheduled. For example, a task scheduled to run at 4:00 PDT runs at 1:00 EDT.

4. Enter the date and time to launch the first execution of this task.
You can enter the date manually, or click the ... icon to select a date from the calendar.

— OR —

Select the Run Now field to schedule the task to run immediately after clicking Schedule. For recurring task,
the task runs at the current time at the specified Execution Frequency.

5. Specify how often this task should run with the Execution Frequency drop-down list.
Subsequent executions of this task occur at the time specified in the First Execution fields.

6. Click Schedule to save this scheduled task.
Go to the Schedule Tasks page to view a list of all scheduled tasks.

See “Scheduled Tasks” on page 72.

Scheduled	Tasks

The Scheduled Tasks page contains a list of all scheduled tasks, whether recurring or one-time only. One-time
tasks are removed from the list after they are executed.

Tasks that are scheduled, but do not execute due to malformed task definitions are displayed in the Scheduled
Task table with an error icon (!) in the Last Executed column. Tasks that fail in this way never execute and,
therefore, never display results on the Tasks Results page. To see details of the execution error, click on the task
to display the Edit Schedule dialog. The error information is displayed in the Last Launch Error field. Errors of this
type should only occur for custom task definitions, not for any of the tasks supplied with the product. To correct
the error, delete the task schedule, correct the task definition, and recreate the schedule.

Use the Scheduled Tasks page to edit or delete schedules.

Use the search options to limit the number of tasks displayed in the table. Entering a letter, or partial name, in
the Search field displays any tasks with names containing that letter pattern. Click Advance Search to search by
task results.See “Working with Schedules” on page 73.

To create a scheduled task see “How to Schedule a Task” on page 71.

The Scheduled Tasks page contains the following information:

Table 6—Scheduled Tasks Column descriptions

Field Name Description

Name The name of the schedule as defined on the New Schedule page.

Next Execution The date and time at which the task is next scheduled to execute.

Last Execution The date and time at which the task most recently executed.
This field displays an error icon (!) for tasks that do not execute due to
malformed tasks definitions.

Last Result The result of the last run of this task, for example Success or Failed.

Owner The creator of the schedule.
72 SailPoint IdentityIQ System Administration Guide

Working with Schedules
Working	with	Schedules

To edit an existing schedule, click a schedule name or right-click and select Edit to display the Edit Schedule
dialog.

See “How to Edit a Schedule” on page 73.

To delete a schedule, right-click the schedule name and select Delete from the drop-down menu. Click Yes on
the confirmation pop-up to delete the schedule.

How	to	Edit	a	Schedule

Use the Edit Schedule dialog

1. Click or mouse over the Monitor tab and select Tasks to open the Tasks page.

2. Click on the Schedule Tasks tab to display the list of scheduled tasks.

3. Click a schedule name or right-click and select Edit to display the Edit Schedule dialog.

4. Edit the name or description for this scheduled task.

Note: Task that run across time zones run at the time scheduled, relative to the time zone in which
they are scheduled. For example, a task scheduled to run at 4:00 PDT runs at 1:00 EDT.

5. Change the date and time to launch the first execution of this task.
You can enter the date manually, or click the ... icon to select a date from the calendar.

— OR —

Select the Run Now field to execute the task immediately after clicking Schedule. For recurring tasks, the task
runs at the current time at the specified Execution Frequency.

6. Specify how often this task should run with the Execution Frequency drop-down list.
Subsequent executions of this task occur at the time specified in the First Execution fields.

7. Click Save to save this scheduled task and return to the Schedule Tasks page.
See “Scheduled Tasks” on page 72.

Task	Results

The Task Results page contains a list of all of the tasks that have run or are currently running.

Use the search options to limit the number of tasks displayed in the table. Entering a letter, or partial name, in
the Search field displays any tasks with names containing that letter pattern. Click Advanced Search to filter by
start date, end date, or results.

Table 7—Task Results Column Descriptions

Column Description

Name The name of the task.

Date Complete The date and time stamp of when the task completed running.
SailPoint IdentityIQ System Administration Guide 73

Task Results
Click on a task name in the Tasks Results table to display the Task Results page. Each task type returns information
specific to the options that were selected. Tasks that executed with partitioning enabled also display the
partitioned results, broken down by the host name of the partitions on which they ran.

Several statistics related to task run length are maintained to help identify tasks that are running longer or
shorter than expected. Each time a task is run, we save the start time. When the task is complete we calculate
the run time in seconds.

These statistics are not set until the task complete. Until then they are zero. The run time change is a positive or
negative integer representing the percent change in run length for this task relative to the average at the time
was started. A value of 25 means the task ran 25% longer than average, and a value of -10 means the task was
10% faster.

See “Task Types” on page 75 for details on the information that might be on the Task Results page.

To terminate a currently running task, a task flagged as pending in the Date Complete column, right-click on the
task and select Terminate from the drop-down menu. You are asked to confirm the termination.

To delete task results, right-click on a result and select Delete. Tasks that require a sign off can only be deleted
by a user with the Signoff Administrator capability.

If a task was scheduled to run but no results were returned, go to the Scheduled Task tab to ensure that errors
did not occur during the task execution.

Result The result status, Pending, Success, or Failed.
A result of Success with an exclamation point (!) indicates that there are
warnings associated with the results.

Signoff The status of the sign off request for the task results.
None — no sign off required
Waiting — sign off request not complete
Signed — a sign off decision has been made

Owner The name of the user who launched this task.

Table 7—Task Results Column Descriptions

Column Description
74 SailPoint IdentityIQ System Administration Guide

Task Types
Task	Types

The task types are:

• Account Aggregation — scan all applications, discover users and entitlements on those applications, and
then correlate those users and entitlements with roles.

- See “Account Aggregation” on page 78.

• Account Group Aggregation — scans applications and aggregates account groups and application object
types. These are then used for group certification (either permissions or membership) or for displaying
group information in identity certifications.

- See “Account Group Aggregation” on page 81.

• Activity Aggregation — scan all applications, discover activity on the applications, and then correlate that
activity with identity cubes. This enables you to track and monitor all activity for possible policy
violations.

- See “Activity Aggregation” on page 81.

• Alert Aggregation — scan applications and aggregates alerts from a set of Alert Collectors. These are then
used to generate alert actions.

- See “Alert Aggregation” on page 82

• Alert Processor — process the aggregated alerts against the alert definitions and launch the appropriate
action.

- See “Alert Processor” on page 83

• Application Builder — create multiple IdentityIQ applications or update the attribute map of an existing
IdentityIQ application.

- “Application Builder” on page 85

• ArcSight Data Export — export data for HP ArcSight Database Connector to an external database table.

- “ArcSight Data Export” on page 87

• Classification — retrieve classification data from File Access Manager and assigns it to entitlements
according to correlation logic defined in the applications that aggregate relevant account and group data
or in the File Access Manager global configuration settings.

- “Classification” on page 83

• Data Export — generate a de-normalized data report to export to an external database table.

- “Classification” on page 83

• Effective Access Indexing — generate an index of any indirect access that was granted through another
object. For example a nested group, an unstructured target, or another role.

- “Effective Access Indexing” on page 84

• Encrypted Data Synchronization Task —re-encrypt data with user-generated encryption key.

- "Encrypted Data Synchronization Task" on page 90

• Entitlement Role Generator — scans the entitlements in the system and automatically generates a
simple role and appropriates a profile for each one that it finds.

- “Entitlement Role Generator” on page 90

• FIM Application Creator — automatically discover and create FIM Management Agent Applications.

- “FIM Application Creator” on page 91
SailPoint IdentityIQ System Administration Guide 75

Task Types
• IQService Public Key Exchange — change the public keys that are used for IQService communications

- “IQService Public Key Exchange” on page 92

• ITIM Application Creator — inspect the IBM Tivoli Identity Manager (ITIM) and retrieve information
about the ITIM services (applications). This task auto-generates an application for each service defined
in ITIM.

- “ITIM Application Creator” on page 92

• Identity IQ Cloud Gateway Synchronization — Synchronize the specified objects to the Cloud Gateway.

- “IdentityIQ Cloud Gateway Synchronization” on page 93

• Identity Refresh — scan all applications, including the IdentityIQ application, to ensure that all identity
information is up-to-date and accurate. Refresh identity scans are also used to detect and report on policy
violations and trigger event certifications.

- See “Identity Refresh” on page 93.

• Identity Request Maintenance — scan for completed Lifecycle Manager access requests.

- See “Identity Request Maintenance” on page 97.

• Missing Managed Entitlements Scan — scan the selected application to create entitlement objects for
items added after the application was last aggregated

- “Missing Managed Entitlements Scan” on page 98

• Novell Application Creator — inspect the Novell IDM application and retrieve information about all
connected applications.

- See “Novell Application Creator” on page 98.

• OIM Application Creator — inspect the OIM application and retrieve information about all connected
applications.

- See “OIM Application Creator” on page 99.

• Policy Scan — runs policies against identity cubes and update identity score cards with any policy
violations discovered.

- See “Policy Scan” on page 99.

• Propagate Role Changes — refreshes identities who have an assigned role whose associated
entitlements have changed.

- “Propagate Role Changes” on page 100.

• Refresh Logical Accounts — is used to refresh composite accounts for all identities that could,
potentially, have a composite account on the composite applications selected.

- See “Refresh Logical Accounts” on page 101.

• Role Index Refresh — updates all role information and creates the indexes needed to perform role
searches. You must run this task before performing any role searching.

- “Role Index Refresh” on page 102

• Run Rule — runs the specified rule with name/value pairs.

- “Run Rule” on page 102

• Sequential Task Launcher — launches the specified tasks in the order defined. This enables you to launch
tasks that must be run sequentially in the proper order without having to schedule each separately based
on estimated run times.

- “Sequential Task Launcher” on page 102
76 SailPoint IdentityIQ System Administration Guide

Task Types
• "System Maintenance" on page 103 — tasks designed to run in the background.

- See “System Maintenance” on page 103.

• Target Aggregation — scan selected applications for activity targets.

- See “Target Aggregation” on page 103.

See “Tasks Page” on page 65 for information on working with these task types.

All task types contain the following standard properties:

Table 8—Task Standard Properties

Field Description

Name The name of the task as defined when the task was created

Description Brief description of the task.

Previous Result
Action

Previous result actions determine how subsequent runs of this task react to existing
task results.
Delete — overwrite the previous task results with the new information.
Rename Old — append a numeral to the name of the old task result.
Rename New — append a numeral to the name of the new task result.
Cancel — cancel the new run of the task if a task result with the same name exists.

Allow
Concurrency

Enable two identical tasks to run at the same time.
If enabled, allow concurreny appends a numeric value to the name of the task that
started second. If disabled, the second task is cancelled and an exception sent to the
requestor.

Require Signoff Require sign off on the results of this task.
Tasks that require sign off generate work items and email notifications that are
assigned to the designated signers. Sign off decisions are retained with the task
results for tracking purposes.

Host A comma separated list of host names on which to run this task. If multiple hosts are
specified, the task manager selects the first active host

If there are no active hosts, or if an incorrect host name is given, the task terminates,
and an error message is left in the result.

Number of Runs The number of times this task has been run.

Average Run Time The average time in seconds of task runs.

Reset Run
Statistics

Reset the statistic if you reconfigure the task and expect the run times to change.

When you reconfigure complex tasks like aggregation or refresh, you should consider
resetting run statistics. For example, enabling provisioning in the refresh task can
profoundly influence run time so statistics should not be diluted by the previous
average before provisioning was enabled.

Email Task Alerts
SailPoint IdentityIQ System Administration Guide 77

Task Types
Account	Aggregation

Account Aggregation tasks scan all applications, discover users and entitlements on those applications, and,
optionally correlates those users and entitlements with roles.

Identities that have changed since the last aggregation performed on an application are marked as needing
refresh to increase the performance of identity refresh tasks. You can disable this function.

You can perform the correlation functions as part of this task or run account aggregation on all of the applications
in your enterprise and then correlate the identity cubes with all of the aggregated information using an identity
refresh task.

To perform aggregation on a composite application you must include the composite application and all of the
applications that have accounts with which it is associated in the task definition.

Partitioning is available to speed the processing time for account aggregations and level the load on the machines
running these tasks. Partitioning is used to break operations into multiple pieces, or partitions. Each partition is
then placed in a global queue, and machines, or hosts, in a cluster compete to execute the partitions in the
queue. Machines are added or removed from the cluster dynamically with automatic balancing. If a machine fails
or is taken down while processing a partition, the partition is placed back into the queue and reassigned to a
different machine. A single result object is shared by all partitions and is continually updated so you can monitor
the overall progress of the partitioned operation. When all partitions have finished executing the result is marked
complete. See, “Partitioning” on page 63.

Note: You must run the Target Aggregation task after this task is complete if you have activity targets
set. This tasks removes all targets when it is run.

See “Target Aggregation” on page 103.

The information scanned and updated is determined by the following criteria when the task is created or edited.
You can use any combination of options to build a task.

Email Notification Select a frequency for email notification to be sent upon task completion.
Disable — no email notification sent on task completion
Warning — send an email notification if the task results in a warning
Failure — send an email notification if the task fails
Always — always send an email notification upon task completion

Email Notification
Template

Select a notification email template from the drop-down list.

Email Recipients The list of users to receive the task completion notification.

Use the drop-down arrow to display all identities, or type the first few letters of a
name. select names from the list.

Table 9—Account Aggregator Options

Option Description

Select an
application to
scan

The drop-down list of all applications.

Table 8—Task Standard Properties

Field Description
78 SailPoint IdentityIQ System Administration Guide

Task Types
Optionally select a
rule to assign
capabilities or
perform other
processing on
new identities

If accounts are discovered that do not have matching identities in the IdentityIQ
application, the rule specified here is used to create a new identity cube.
These rules are created during configuration and deployment.
Note: Click the “...” icon to launch the Rule Editor to make changes to your rules if
needed.

Refresh assigned
and detected
roles

Scan for newly assigned roles and update identity cubes.

Check active
policies

Scan for policy violations and update identity cubes.

Check to updated
existing identities,
but not to create
new identities if a
match is not
found

Only create links if they can be correlated to an existing identity.

Refresh the
identity risk
scorecards

Scan for risk score information and update identity risk score cards.

Maintain identity
histories

Compare current identity cubes to existing identity cube history, snapshots, and
create new snapshots if any changes are discovered.

Enable Delta
Aggregation

Enable the connector to aggregate only those accounts that have changed since the
last aggregation. This requires support by the connector.

Detect deleted
accounts

Compare current aggregated accounts with the accounts previously aggregated and
report any deleted accounts.

Maximum deleted accounts:
This is the maximum number of accounts that can be flagged for deletion after an
account aggregation. If this number is passed, no accounts are deleted from the
application.

Refresh assigned
scope

Refresh assigned scope based on changes discovered during the aggregation and
correlation process.

Disable auto
creation of scopes

Do not automatically assign scope to identities as part of this task.

Disable
optimization of
unchanged
accounts

Use this option to force the aggregation of all accounts, changed or unchanged since
the last aggregation.

Promote
managed
attributes

When enabled, any values for entitlement or permissions encountered while running
the task automatically get promoted as managed attributes.

Table 9—Account Aggregator Options

Option Description
SailPoint IdentityIQ System Administration Guide 79

Task Types
Disable
auto-creation of
applications

Do not automatically create application objects for multiplexed accounts.

Disable marking
the identity as
needing refresh

Disable marking only identities on which change was detected as need to be
refreshed.

All identities are included in subsequent identity refresh task.

Enable
Partitioning

Enable partitioning of this task across multiple hosts.

Note:

Partitioning is not supported for PE2 based connectors.

Partitioning has to be configured on the applications and connectors before this
option is valid.

Terminate when
maximum
number of errors
is exceeded

Terminate after the specified number of errors occurs.

If the database is available, the task result contains a message indicating that the task
was terminated due to excessive errors. If the database is down, the task result
cannot be persisted and the task might appear to remain in the pending state.

Maximum errors before termination
Number of errors to tolerate before terminating the task.

Sequential
Execution -
Terminate an
Error

Force applications to aggregate in the listed order and stop the aggregation task if an
error is encountered.

Actions to include
in the task result

Select the actions performed as part of the aggregation task for which detailed
information should be included in the task results.
This task performs a number of individual actions on accounts and identity cubes
during the aggregation and configuration processes. By default only the final results
of the task are included in the task results report.
To included detailed information on the actions performed as part of the task, select
those actions from the list.
Correlate Manual — identities with accounts that were manually correlated. These
are not changed by the task.
Correlate Maintain — correlation information has not changed since the last time this
task ran.
Correlate New Account — a new account was discovered for an existing identity and
assigned.
Correlate Reassign — an existing account was reassigned from one identity to
another as part of the correlation process.
Create New Identity — an account was discovered for an identity that did not exist
in IdentityIQ. An identity cube was created for the new identity.
Ignore — an account for a new identity was discovered, but a new identity cube was
not created. This might occur if this tasks is configured to perform correlation only.
Remove Account — an account discovered as part of a previous aggregation was not
found during this aggregation. These accounts are removed from IdentityIQ.

Table 9—Account Aggregator Options

Option Description
80 SailPoint IdentityIQ System Administration Guide

Task Types
Account	Group	Aggregation

An Account Group Aggregation task scans applications and aggregates account groups and application object
types. These results are then used for group certification (either permissions or membership), for displaying
group information in certifications, and for performing identity searches.

The information scanned and updated is determined by the following criteria when the task is created or edited.
You can use any combination of options to build a task.

Activity	Aggregation

Activity Aggregation tasks scan all applications, discover activity on the applications, and then correlate that
activity with identity cubes. Using these tasks enables you to track and monitor activity within your enterprise.

Table 10—Account Group Aggregation Options

Option Description

Select
applications to
scan

The drop-down list of all applications configured to work with IdentityIQ.

Filter object types
to scan

This option is only available for applications on which multiple application objects can
exist.

This option is not available if you select to scan more than one application.

The list of all object types or account groups associated with the selected application.
If nothing is selected, all object types and account groups are included.

It might become important to scan object types separately if they share attributes.

Enable Delta
Aggregation

Enable the connector to aggregate only those account groups or application objects
that have changed since the last aggregation. This requires support by the connector.

Detect deleted
account groups

Detect and delete any account group or application object that was deleted on the
native application since the last aggregation task was run.

Automatically
promote
descriptions to
this locale

The default locale for the description attribute of the account group or application
object. This option is used if an existing description locale is not found.

Description
attribute (default
description)

Note: The Description Attribute defined in the Application Group Schema
overwrites any value set here.

The attribute that stores the description. This value defaults to the value
description if this option is not set.

Group
Aggregation
Refresh Rule

The rule used to set the owner or modify the account group when it is created or
refreshed.

Click the ... icon to launch the Rule Editor to modify the rule if needed.

Promote
Classifications

Promote classification from the ResourceObject classification to the
ManagedAttribute.
SailPoint IdentityIQ System Administration Guide 81

Task Types
The information scanned and updated is determined by the following criteria when the task is created or edited.
You can use any combination of options to build a task.

Alert	Aggregation

Alert Aggregation tasks scan applications and aggregates alerts from a set of Alert Collectors. These are then used
to generate alert actions.

The information scanned and updated is determined by the following criteria when the task is created or edited.
You can use any combination of options to build a task.

Table 11—Activity Aggregator Options

Option Description

Select an activity
data source

The drop-down list of all activity data sources discovered by IdentityIQ.
If no data source is selected, all available data sources are scanned as part of the task.
You applications must be configured to support activity tracking.

Enable storage of
the last activity
position scanned
on the data
source

If enabled, the task marks the last activity scanned on the data source so that
subsequent runs of this task begin scans at that mark instead of rescanning
information.
If this option is not enabled, each run of the task scans the entire data source.

Store
uncorrelated
activities so they
can be re-scanned
and correlated at
a later time

If enabled, all activity discovered on the data source is stored, even if that activity
does not correlate to a user in the application. Storing this activity enables you to add
users and update their identity cubes without having to rescan your data sources.

Table 12—Alert Aggregation Options

Option Description

Select sources to
scan

The drop-down list of all alert data sources discovered by IdentityIQ.
If no data source is selected, all available data sources are scanned as part of the task.
You applications must be configured to support alert tracking.

Enable Delta
Aggregation

If enabled, the task only aggregates alerts that have occurred since the last run of this
task.

This option requires support from the connectors being scanned.

Process Alerts If enabled, an Alert Processor task will launch as soon as this Alert Aggregation task is
complete.

If you select this option, you can limit the alert types processed in a comma separated
list, or process all of the alerts collected.
82 SailPoint IdentityIQ System Administration Guide

Task Types
Alert	Processor

Alert Processor tasks process the aggregated alerts against the alert definitions and launch the appropriate
action.

The information scanned and updated is determined by the following criteria when the task is created or edited.
You can use any combination of options to build a task.

Classification

The Classification task is used when you are integrating with File Access Manager, to use File Access Manager’s
classification to flag and categorize entitlements within IdentityQ. This task retrieves classification data from File
Access Manager and assigns it to entitlements according to the correlation logic that is defined in the applications
that aggregate relevant account and group data, or in IdentityIQ’s File Access Manager global configuration
settings.

After you complete customizing your task options, click Save for later use, or Save and Execute to save the task
and run it immediately.

Table 13—Alert Processor Options

Option Description

Optional filter
string to constrain
the alerts
processed

If not set, all are processed.

Exclude alerts
previously
processed

Enable to exclude Alerts that were previously processed.

Optional filter
string to constrain
the alert
definitions to
match against
alerts

If not set, all Alert Definitions are evaluated.

Enable
Partitioning

Enable the task to split into partitions and run across multiple threads and hosts, if
available.

Table 14—Classification Options

Option Description

Classification
Customization
Rule

You can use a rule to customize your classification object, for example to add or
modify attributes in the object. Rules must be of the type
“ClassificationCustomization” to appear in this selection list.

Automatically
promote
descriptions to
this locale

The locale that any description that is included in the File Access Manager objects will
be promoted to, by default. This is used if an existing description locale is not found.
SailPoint IdentityIQ System Administration Guide 83

Task Types
Data	Export

The Data Export task enables you to export IdentityIQ data to an external database. You can select to export any
combination of identity, account, and certification data.

Before you can use the Data Export task, you must create the export database tables on your destination data
source.

The task schedule user interface includes a button that generates a customized DDL which you can hand off to
a database administrator for execution. Once the data source parameters are entered, click Generate Table
Creation SQL.

After you complete customizing your task options, click Save for later use or Save and Execute to save the task
and run it immediately.

Effective	Access	Indexing

 Effective Access is any indirect access that was granted through another object, such as a nested group, an
unstructured target, or another role.

Table 15—Data Export Options

Option Description

Datasource Parameters

Database Select a database type from the drop-down list.

User Name Enter the user name parameter of the database table.

Password Enter the password of the database table.

Driver Class Enter the driver class used for database.

URL Enter the URL of the database.

Object Export Options

Export Identities. Export identity related data. You can perform a full or incremental export. Use the
Export Filter field to apply any database filters.

Export Accounts. Export account related data. You can perform a full or incremental export. Use the
Export Filter field to apply any database filters.

Export
Certifications.

Export certification related data. You can perform a full or incremental export. Use
the Export Filter field to apply any database filters.

Table 16—Effective Access Index Options

Option Description

Index Entitlement
Targets

Include any effective entitlements associated with application that support effective
access searching.

Index Role Targets Include any effective roles associated with application that support effective access
searching.

Index direct role
permissions

Include any effective direct role permissions associated with application that support
effective access searching.
84 SailPoint IdentityIQ System Administration Guide

Task Types
After you complete customizing your task options, click Save for later use or Save and Execute to save the task
and run it immediately.

Application	Builder

The Application Builder task lets you create multiple IdentityIQ applications, and update existing applications in
bulk. The task also includes the ability to perform account and group aggregation for a host using the associated
application. It can also export essential data about your existing applications.

The task accepts the inputs required to create or update applications from a.csv file. Sample.csv files for
Linux-Direct and Windows-Local are provided with this task as examples of how input data can be defined. The
sample files are located in the WEB-INF/config directory of your IdentityIQ installation. You can also use the
task’s Read option to create .csv files from your existing applications, to use as models for creating .csv files
that support the create and update options.

By default, before creating or updating an application on IdentityIQ, a test connection is performed to ensure that
the connector is performing correctly. To skip the Test Connection operation, use Skip Test Connection in the
Application Builder options.

To enable logging for the Application Builder task, add this entry to the log4j2.properties file:

logger.ApplicationBuilderExecutor.name=sailpoint.task.ApplicationBuilderExecutor

logger.ApplicationBuilderExecutor.level=debug

Before using the task to update an existing application, it is recommended that you use the iiq console to export
the application definition, in case you need to restore them to their original state.

When you use this task to Update an existing application, the update is partial; that is, the update operation can
add new attribute definitions to an existing schema, as well as adding a new schema.

Index direct
entitlement
permissions

Include any effective direct entitlement permissions associated with application that
support effective access searching.

Index
unstructured
targets

Include any unstructured targets.

Refresh Fulltext
Index

Refresh the Fulltext index as part of this task.

Index
classifications

Add an entitlement’s classifications to the target association that is created when the
entitlement target is indexed; in the UI, this means that an entitlement’s
classifications will be displayed whenever that entitlement occurs as Effective Access.

Promote
classifications

Promote classifications up the effective access "chain" to the entitlement that grants
the effective access. For example, if EntitlementA grants you effective access to
EntitlementB, and EntitlementB has a classification assigned to it, then with the
Promote Classifications option enabled, the classification assigned to EntitlementB
will also be displayed in the UI for EntitlementA.

Delete all current
targets before
indexing

Clear an existing Effective Access Index before running this task.

Table 16—Effective Access Index Options

Option Description
SailPoint IdentityIQ System Administration Guide 85

Task Types
Use the account or group aggregation options to trigger a background aggregation task.

Working	with	Flexible	Schemas	and	Provisioning	Forms

The Application Builder task supports including XML definitions in your csv files if you need to create or update
flexible account schemas, or provisioning forms. Refer to the sample.csv files provided with this task for
examples of how a schema definition can be included in the.csv file. Sample files are provided in the
WEB-INF/config directory for Linux-Direct and Windows-Local.

If your input file includes an XML definition of a Provisioning Form, be aware that importing a Provisioning Form
definition in a create or update operation will replace all existing Provisioning Forms with the new form as
defined in the .csv

Table 17— Attribute Builder Options

Option Description

Application Type Select an application type from the drop-down list. This is type of application you
want to bulk-process. A single application builder task can only process applications
of the same IdentityIQ-supported type, such as JDBC, Active Directory, or LDAP

Operation Select an operation from the drop-down list.

Create - create multiple applications by providing parameters in the .csv file in the
specified format
Update - update existing applications by providing parameters in the .csv file in the
specified format
Read - export existing applications to the .csv file format. Any existing exported files
will be overwritten if the task is run again using the same filename.

Note: The Read operation reads the attribute map, account schema, and
provisioning policy of an existing application present in IdentityIQ and exports it to
the file path provided in CSV format. You must provide the application type and file
path to which the file is to be exported before running the operation.

File Path The file path, including file name, for the.csv file. For the Read option, this is the path
to the location and name of the file the task will create. For Create and Update
options, this is the path to the file containing the data for creating or updating your
applications; these files must be present on the application server or accessible within
the network.

Sample .csv files are provided in the WEB-INF/config directory for Linux-Direct
and Windows-Local:
 Application-builder_linux.csv
 Application-builder-windows-local.csv

Account
Aggregation

Executes the account aggregation task. The account aggregation task is triggered
sequentially.

The aggregation task will use the following format; the UID (unique identifier) is
generated automatically:
<Application type> + <Account Aggregation> + <Current time stamp>
+ <UID>
86 SailPoint IdentityIQ System Administration Guide

Task Types
ArcSight	Data	Export

Export data for HP ArcSight Database Connector to an external database table.

The ArcSight data export task enables you to export IdentityIQ data to external tables.

Before you can use the ArcSight data export task, you must create the export databases on your destination data
source.

The task schedule user interface includes a button that generates a customized DDL which you can hand off to
a database administrator for execution. Once the data source parameters are entered, click Generate Table
Creation SQL. The task adds the following tables in database:

Group
Aggregation

Executes the group aggregation task. The group aggregation task is triggered
sequentially.

The aggregation task will use the following format; the UID (unique identifier) is
generated automatically:
<Application type> + <Group Aggregation> + <Current time stamp>
+ <UID>

Number of
Applications per
Aggregation Task

The number of application included in each aggregation task.

Default: 10

Skip Test
Connection

Skip the default test connection operation.

Table 18—Tables in database

Tables Description

sptr_arcsight_export Table to maintain the task execution history.

sptr_arcsight_identity Table contains exported data of Identity.

sptr_arcsight_audit_event Table contains Audit Events information.

Table 19—ArcSight Data Export Options

Option Description

Datasource Parameters

Database Select a database type from the drop-down list.

User Name Enter the user name parameter of the database table.

Password Enter the password of the database table.

Driver Class Enter the driver class used for database.

URL Enter the URL of the database.

Object Export Options

Table 17— Attribute Builder Options

Option Description
SailPoint IdentityIQ System Administration Guide 87

Task Types
After you complete customizing your task options, click Save for later use or Save and Execute to save the task
and run it immediately.

Configuring	HP	ArcSight	Task	to	populate	host	name	or	IP

The value of column application_host can be populated by adding a map with the value as
arcsightAppNameHostMap as shown in the following example. The fieldThis is read from the map as explained
below:

It is difficult to determine the host name or IP address of the account as the field is not constant in Application
definition in IdentityIQ. Hence, customer can define a map in TaskDefinition and select the task added to export
data in ArcSight table. The key in the map should be name of the application defined in IdentityIQ and value
should be hostname, IP, or any string that ArcSight administrator understands.

To add the map:

1. Go to debug page, navigate to TaskDefinition and open the ArcSight task configured above.

2. Add the entry as key = Name of Application defined in IdentityIQ and value as the string to identify host of
Account like Hostname or IP.

3. Save the task definition. For example:

 <entry key="arcsightAppNameHostMap">

 <value>

 <Map>

 <entry key="LinuxApp1" value="linux01.iiq.com"/>

 <entry key="LinuxApp2" value="127.15.19.21"/>

 <entry key="ADDirectApp" value="AD.iiq.com"/>

 <entry key="ServiceNowApp" value="https://iiq.service-now.com"/>

 <entry key="ACF2App" value="ACF2-Mainframe"/>

 </Map>

 </value>

</entry>

Export Identities Export Identity related data in ArcSight tables. It provides the following options:

Full: Exports all the records irrespective if they were exported earlier.

Incremental: Exports only records that are updated since last run of this task.
This option can even be selected when running the task for first time. When the task
is running for first time, this option exports all records similar to the Full option.

Export Audits Export Audit Events in ArcSight table. It provides the following options:

Full: Exports all the records irrespective if they were exported earlier.

Incremental: Exports only records that are updated since last run of this task.
This option can even be selected when running the task for first time. When the task
is running for first time, this option exports all records similar to the Full option.

Table 19—ArcSight Data Export Options

Option Description
88 SailPoint IdentityIQ System Administration Guide

Task Types
Note: If the application name is not defined in the map the host field is blank.

Following fields are added in export table:

Table 20—IdentityIQ sptr_arcsight_identity export table

Fields Description

linkid Primary key for Link table in IdentityIQ database. This field is copied from iiq_link table
id field and is the primary key for export table.

identityid Primary key in Identity table. This field is copied from iiq_Identity table.

modified_dt Populates timestamp when the record is exported in export table. The field can be
referred while configuring time based ArcSight database connector.

identity_display_n
ame

Represents Display Name of Identity which is copied from iiq_identity table field
(display_name).

identity_firstname Represents first name of Identity which is copied from iiq_identity table field
(firstname).

identity_lastname Represents last name of Identity which is copied from iiq_identity table field
(lastname).

application_type Populates the type of Account which is connected to the Identity like ActiveDirectory
– Direct, ACF2 – Full, Box, Cloud Gateway, ServiceNow and so on.

application_host The host name, IP, or any string which can be used by ArcSight administrator to
identify the host of link/account uniquely. Customer can enter any string which can be
sent to ArcSight to identify the host of link.

This field can be populated as explained in “Configuring HP ArcSight Task to populate
host name or IP” on page 88.

application_name Populates the name of Application of the Account connected to the Identity.

link_display_name The account connected to the identity which is copied from iiq_link table, field
display_name.

entitlements Represents comma separated list of entitlements to the link of Identity.

risk_score Represents the composite risk score of Identity.

Table 21—IdentityIQ sptr_arcsight_audit_event export table

Fields Description

auditid The audit ID which is primary key for the export Audit table. The field is copied from
iiq_audit_event table id field.

created_dt Populates timestamp when the record is exported in export table. The field can be
referred while configuring time based ArcSight database connector.

owner Describes the Owner of the audit generated.

source Provides more details to help ArcSight administrator determine the source of audit.

action Describes the action taken on entity.
SailPoint IdentityIQ System Administration Guide 89

Task Types
Encrypted	Data	Synchronization	Task

The Encrypted Data Synchronization Task is used to re-encrypt IdentityIQ data when a new custom encryption key
is generated.

Once you have completed customizing your task options, click Save for later use or Save and Execute to save the
task and run it immediately

Entitlement	Role	Generator

The Entitlement Role Generator creates an Entitlement Role for every entitlement found in a specified
application. Recommended role types are Entitlement or IT.

You can further refine creation by specifying an entitlement name or permission target so that only entitlements
matching the specified criteria are used.

It is recommended to specify a template to be used to name the created roles. IdentityIQ uses Velocity templates.
If no template is used, a generic name based on either the entitlement or role is created.

target Provides target details.

application Describes the name of application the target belongs to.

account_name The name of Account is populated in this field.

attribute_name The name of attribute modified.

attribute_value The value provided to the attribute.

Table 22—Encrypted Data Synchronization Task Options

Option Description

Disable
Application
Synchronization

Select this option to ignore encryption key synchronization against applications.

Disable Identity
Synchronization

Select this option to ignore encryption key synchronization against identities.

Disable
IntegrationConfig
Synchronization

Select this option to ignore encryption key synchronization against IntegrationConfig
objects.

Disable
Attachment
Synchronization

Select this option to ignore encryption key synchronization against attachments.

Convert
Encrypted
Identity Secrets to
Hashing

Select this option to convert any encryption keys to use hashing.

Table 21—IdentityIQ sptr_arcsight_audit_event export table

Fields Description
90 SailPoint IdentityIQ System Administration Guide

Task Types
FIM	Application	Creator

Run the FIM Application Creator task automatically discover and create FIM Management Agent Applications.
This task auto-generates an application for each management agent defined in FIM. The applications generated
by this task are added to the list of applications in IdentityIQ.

Table 23—Entitlement Role Generator Options

Option Description

Applications Select one or more applications from the drop-down list.

Type of Role to
Create

Input the name of the role based on the specifications for your enterprise.

Enter the locale to
check for
descriptions. (If
left blank the
default Locale is
used)

Enter the location of the role description.

Generate
entitlements from
attributes whose
name starts with

Enter letters in the attribute name to filter the scan.

Generate
entitlements from
permissions
whose target
starts with

Enter letters in the permission name to filter the scan

Velocity template
from which to
generate
entitlement role
names. The
template is
always passed the
applicationName
parameter. The
description,
attributeName,
attributeValue,
permissionTarget,
and/or
permissionRights
parameters are
set when
available.

Enter the Velocity template string.
SailPoint IdentityIQ System Administration Guide 91

Task Types
IQService	Public	Key	Exchange

Run the IQService Public Key task to change the public keys that are used for IQService communications.

ITIM	Application	Creator

Run the ITIM Application Creator task to inspect IBM Tivoli Identity Manager (ITIM) and retrieve information
about the ITIM services (applications). This task auto-generates an application for each service defined in ITIM.
Each ITIM application contains a list of services that are roughly equivalent to the list of applications maintained
in IdentityIQ. The applications generated by this task are added to the list of applications in IdentityIQ.

Table 24—ITIM Application Creator Options

Option Description

Microsoft
Forefront Identity
Manager
Applications

Select applications to inspect and from which applications should be generated based
on the management agents found.

Native Object
Types of Account

Specify the native object types of accounts created by this task.

Native Object
Types of Group

Specify the native object types of groups created by this task.

Table 25—ITIM Application Creator Options

Option Description

Select IQService
based
application(s)

Select IQService based applications on which to change the public keys.

Table 26—ITIM Application Creator Options

Option Description

ITIM Applications Select applications to inspect and from which applications should be generated based
on the services found.

Generated
application name
prefix

Specify a prefix to append to any applications created by this task.

Generated
application name
suffix

Specify a suffix to append to any applications created by this task.
92 SailPoint IdentityIQ System Administration Guide

Task Types
IdentityIQ	Cloud	Gateway	Synchronization

IdentityIQ Cloud Gateway Synchronization tasks scan selected IdentityIQ applications for specified objects and
synchronizes them with IdentityIQ Cloud applications. It is intended for use when IdentityIQ is not able to
communicate directly with the managed system.

Identity	Refresh

Refresh identity tasks scan all identities to ensure that all identity information is up-to-date and accurate. Refresh
identity scans are also used to detect and report on policy violations and launch event certifications.

Incremental identity refresh can be configured to only refresh those identities on which information has changed
since the last refresh was performed, to increase performance.

Note: Partitioning is disabled if you enable Mark dormant scopes after refresh or Refresh the group
scorecards options.

Note: The Number of Refresh Threads option is not supported when partitioning is enabled.

Partitioning is available to speed the processing time for identity refresh tasks and level the load on the machines
running these tasks. Partitioning is used to break operations into multiple pieces, or partitions. Each partition is
then placed in a global queue, and machines, or hosts, in a cluster compete to execute the partitions in the
queue. Machines are added or removed from the cluster dynamically with automatic balancing. If a machine fails
or is taken down while processing a partition, the partition is placed back into the queue and reassigned to a
different machine. A single result object is shared by all partitions and is continually updated so you can monitor
the overall progress of the partitioned operation. When all partitions have finished executing the result is marked
complete. See, “Partitioning” on page 63.

The information scanned and updated is determined by the following criteria when the task is created or edited.
You can use any combination of options to build a task.

Table 27—IdentityIQ Cloud Gateway Synchronization

Option Description

IdentityIQ Cloud
Gateway
application name

Select the name of the application to synchronize.

Applications
hosted on the
IdentityIQ Cloud
Gateway

Select the name of the hosted cloud gateway application with which to synchronize
the IdentityIQ application.

Rules to be
executed on the
IdentityIQ Cloud
Gateway

Select which rules to execute against selected applications.
SailPoint IdentityIQ System Administration Guide 93

Task Types
Table 28—Identity Refresh Options

Option Description

Optional filter
string to constrain
the identities
refreshed

A filtering string used to limit the number of identity cubes updated by this task. For
example you can limit the refresh to one department within your enterprise, such as
Finance, by entering: department == “Finance”

Optional list of
group or
population names
to constrain the
identities
refreshed

A filtering string used to limit the number of identity cubes updated by this task. For
example you can limit the refresh to one group or population within your enterprise.

Refresh identities
whose last refresh
date is before this
date

Refresh any identities not refreshed since the date entered.

Enter and date manually or click the “...” icon to display the calendar view.

Use this to recover from a refresh that ended abnormally. For example, you start a
refresh task and it runs for a day before stopping abnormally. After resolving the issue
with the task, instead of repeating the refresh of all the identities that completed
before the task stopped, you can only refresh the ones that were missed on the last
refresh. Enter the approximate date the last refresh stopped and only refresh the
remainder.

Refresh identities
whose last refresh
date is at least this
number of hours
ago

Enter the number of hours manually.

Use this option to refresh identities that have not been refreshed recently. The time
is in this option is relative rather than absolute. Instead of remembering a specific task
launch date and typing that in each time you run the refresh task you can have just
one task and run that repeatedly. For example you can run it for every thing more
than an hour old.

Refresh identities
whose last refresh
date is within this
number of hours

Enter the number of hours manually.

Use this option to refresh identities that were refreshed recently. The primary use
case for this is to refresh things that were recently touched by aggregation.

For example, if you have several aggregation sources but those sources tend to touch
different subsets of all identities, and you would rather not refresh the identities that
were not touch be the last aggregation.
94 SailPoint IdentityIQ System Administration Guide

Task Types
Include modified
identities in the
refresh window

Refresh any identities modified within the specified time frames.

There are two dates stored on each Identity, the date of last refresh and the date of
last modification.

The last refresh date is set whenever you run the refresh or aggregation tasks and the
identity is changed in some way.

The last modification date is set whenever you edit the identity in some way outside
of a refresh or aggregation task, for example from a Lifecycle Manager workflow or a
custom task.

Use this option to refresh identities that were edited within a period of time, but not
necessarily by the refresh task. For example, you might do a full refresh once a week
but during the week people were adding or removing roles, changing extended
identity attributes, doing manual correlation, or changing identities in some other
way. Most of those cases have options to do a targeted refresh immediately after the
change happens but this is not always the case and sometimes it is better to batch up
a number of refreshes rather than have hundreds of individual refreshes occurring
concurrently. If you ran the refresh task with one of the date-based options you would
not necessarily pick up identities that were manually edited. If you want to include
those select this option.

Refresh only
identities marked
as needing refresh
during
aggregation

Only refresh identities marked as needing refresh during the most recent aggregation
task.

Do not reset the
needing refresh
marker after
refresh

Do not clear the needing refresh marker set during aggregation.

Use this option if you have multiple refresh tasks scheduled, such as entitlement and
risk refresh. Then you can set the final refresh to clear the markers.

Exclude identities
marked inactive

Exclude inactive identities from the refresh.

Refresh identity
attributes

Update identity cubes with any changes made to the attributes used to define
identities.

Refresh Identity
Entitlements for
all links

Refresh any account attribute mark as an entitlement in the application schema.

This process is resource intensive as it refreshes all entitlement values for all links.

Refresh manager
status

Update all identity cubes in which the manager status has changed. For example, if a
user was promoted to manager in their department, their identity cube would be
updated by this task.

Refresh assigned
and detected
roles and
promote
additional
entitlements

Update any assigned or detected role assignments that have change since the last
time this task was run. Any additional entitlements found in this refresh are promoted
during this task.

Table 28—Identity Refresh Options

Option Description
SailPoint IdentityIQ System Administration Guide 95

Task Types
Provision
assignments

Provision any assigned roles and entitlements detected since the last time this task
was run.

Disable
deprovisioning of
deassigned roles

Prevents assigned roles from being deprovisioned after they have been deassigned.

Refresh role
metadata for each
identity

Update information about the identity's relationship to their role. For example,
information regarding whether or not an identity has all the roles required by the
given role.

Note: This option must be selected in order to generate Role Statistics.

Enable manual
account selection

Sent Account Selection Notification emails to users with more than one account on
any application where the system cannot determine the provisioning account. By
default, no provisioning is done in this case.

Synchronize
Attributes

Provision identity mapping targets if their value has changed.

Refresh the
identity risk
scorecards

Update Identity Risk Scores with any information discovered by the scan performed
by this task.

Maintain identity
histories

Update the identity history by creating a snapshot of any identities with information
that has changed since the last refresh.

Refresh the group
scorecards

Update Group Risk Scores with any information discovered by the scan performed by
this task.

Partitioning is disabled if you select this option.

Clean up groups
definitions that
are no longer
referenced

Delete un-referenced group definitions.

This option is only supported if it is selected in conjunction with the Refresh the group
score card option and they run in the same task.

Check active
policies

Scan for active policies and apply those policies to the identities included in the task.

Keep previous
violations

Maintain a history of violations that are no longer active.

A comma
separated list of
specific policy
names. When set
this overrides the
default policies

Scan for and apply only those policies included in this list to the identities included in
the task.

Refresh assigned
scope

Refresh assigned scope based on changes discovered.

Disable auto
creation of scopes

Do not automatically assign scope to identities as part of this task.

Table 28—Identity Refresh Options

Option Description
96 SailPoint IdentityIQ System Administration Guide

Task Types
Identity	Request	Maintenance

The Identity Request Maintenance task scans all Lifecycle Manager access requests to ensure that all identity
change requests were provisioned.

Mark dormant
scopes after
refresh

Mark scopes that are not assigned to any identities as dormant.

Partitioning is disabled if you select this option.

Process Events Enable event certifications.
Use the snapshots created during aggregation to approximate the previous state of
the identities at the beginning of the refresh. This copied identity is compared to the
updated identity to determine if event certifications are launched.

Refresh logical
application links

Scan for changes to composite applications and refresh the link information.

Promote
managed
attributes

When enabled, any values for entitlement or permissions encountered while running
the task automatically get promoted as managed attributes

Number of
Refresh Threads

Specify the number of concurrent threads used during task processing.

The number of threads should not exceed 10.

This option is not supported whit partitioning enabled.

Always launch the
workflow (even if
the usual triggers
don't apply)

Launch a workflow for each identity even if no identity triggers or provisioning policy
questions apply.

Enable the
generation of
work items for
unmanaged parts
of the
provisioning plan

Create work items for role entitlements that are not managed by available connectors
or provisioning integration modules so the appropriate action can be taken.

Disable connector
lookup of
managers that do
not correlate

Disable the default MANAGER_LOOKUP feature and stop the automatic
lookup/bootstrap of the manager account at the connector level.

Enable
partitioning

Enable partitioning of this task across multiple hosts.

Partitioning has to be configured before this option is valid.

Table 28—Identity Refresh Options

Option Description
SailPoint IdentityIQ System Administration Guide 97

Task Types
Missing	Managed	Entitlements	Scan

Missing Managed Entitlement Scan tasks scan the selected application and create any entitlement objects for
items added after the application was last aggregated.

Select the applications to include in the scan. At least one application must be specified. Click the arrow to the
right of the suggestion field to display a list of all applications, or enter a few letters in the field to display a list
of applications that start with that letter string.

This task returns a list of entitlement names, values, and the application on which they were detected.

Novell	Application	Creator

Run the Novell Application Creator task to inspect Novell IDM applications and retrieve information about the
applications to which they are connected. This task generates an IdentityIQ application for applications
connected to the Novell IDM application specified. The applications generated by this task are added to the list
of applications in IdentityIQ.

Table 29—Identity Request Maintenance Options

Option Description

Max age (in days)
for Identity
Request objects

The maximum number of days that an identity request object (AccessRequest) is
stored in the IdentityIQ database before it is removed.

Set this according to your policy on how long access request details are required.

The default is zero (0), which indicates that they are stored forever.

Verify
provisioning for
requests?

Scan for provisioning requests which have been verified.

Number of days to
attempt to verify
the request with
the Identity
model before
failing.

The number of days the task attempts to scan for verified access requests before
reporting a failure.

When a timeout occurs, any item not verified is left in the non-finished provisioning
state, either Committed or Pending, and the overall request is marked Partially
Complete if any item succeeded. If no item succeed the entire request is marked
failed.

Set this value based on the type of connectors and their expected provisioning times.
The default setting is continuous checking forever.

Table 30—Novell Application Creator Options

Option Description

Novell IDM
Application

Select a Novell IDM application to inspect and from which applications should be
generated.

Novell Connected
Applications List

Specify the connected applications for which application should be created in
IdentityIQ.
98 SailPoint IdentityIQ System Administration Guide

Task Types
OIM	Application	Creator

Run the OIM Application Creator task to inspect Oracle Identity Manager applications and retrieve information
about the applications to which they are connected. This task generates an IdentityIQ application for applications
connected to the OIM application specified. The applications generated by this task are added to the list of
applications in IdentityIQ.

Policy	Scan

The Policy task type is used to run policies against identity cubes and update identity score cards with any policy
violations discovered. IdentityIQ provides the Check Active Policies task as a global policy update task.

The information scanned and updated is determined by the following criteria when the task is created or edited.
You can use any combination of options to build a task.

Table 31—Novell Application Creator Options

Option Description

OIM Application Select an OIM application to inspect and from which applications should be
generated.

Table 32—Policy Scan Options

Option Description

Optional filter
string to constrain
the identities
refreshed

A filtering string used to limit the number of identity cubes updated by this task. For
example you can limit the refresh to one department within your enterprise, such as
Finance, by entering: department == “Finance”

Optional list of
group or
population names
to constrain the
identities
refreshed

Use this list to further limit the number of identities included in this policy scan.

Apply all active
policies

Scan for active policies and apply those policies to the identities included in the task.

A comma
separated list of
specific policy
names. When set,
this overrides the
default policies

Scan for and apply only those policies included in this list to the identities included in
the task.
SailPoint IdentityIQ System Administration Guide 99

Task Types
Propagate	Role	Changes

Note: IdentityIQ does not propagate role changes for entitlements on applications that do not support
direct provisioning and would require the creation of multiple work items. If required, a
business process can be enabled in the System Configuration settings to handle that situation.

The Propagate Role Changes task updates any identities that have assigned roles whose associated entitlements
have changed. This is the only task that can propagate the removal of entitlements from an assigned role.

• Once you have completed customizing your task options, click Save for later use or Save and Execute to
save the task and run it immediately.

• After executing the task, the Task Result page displays the following output:

• Number of Identity Updates: displays the total number of Identity updates propagated. It is different
than number of Identities updated, since multiple role events include some common identities and are
counted multiple times, for each role event.

• Number of Events Processed: displays the total number of role events propagated. This is not the
number of role modifications but the role change events in the queue. As single role modification results
in multiple role change events in the queue.

• Number of Events Pending: displays the total number of pending role change events in the queue. If
timeout is not defined, Role Propagation task completes only after propagating all the events. If timeout
is defined, there could be pending events in the queue even after successful completion of this task.

• Number of Events with No Impacted Identities: displays the total number of events which are not
impacting on connected identities. This event count is based on those bundles which are not directly
assigned to the identities.

• Role change events are propagated sequentially and are not consolidated to cancel out redundant
changes.

• If Refresh Identity Task is run before Role propagation task, and if it adds any entitlement as part of role
changes, processing of role change event through Role Propagation Task would be redundant.

• In case of retry status, the transaction would be marked as failed and role propagation task would be

Table 33—Propagate Role Changes Options

Option Description

Number of
minutes task
should run

The number of minutes for the task to run.

The task stops only after finishing current event processing.

Check active
policies

Scan for active policies and apply those to the identities included in the task.

Keep previous
violations

Mark old policies as inactive but do not delete them.

A comma
separated list of
specific policy
names. When set,
this overrides the
default policies.

Scan for and apply only those policies included in this list to the identities included in
this task.

Enable Partition Allow the task to split into partitions and run across multiple threads and hosts, if
available.
100 SailPoint IdentityIQ System Administration Guide

Task Types
stopped.

• While adding an entitlement, if account is missing, transaction would be marked as failed and role
propagation task would be stopped. User has to run Refresh Identity task to resolve this.

• While processing an event, if the following exception is from target system, the task would remain
blocked until the events are successfully processed.

• mandatory group cannot be removed

• This issue can be resolved by deleting the event from the database.

- When Role Propagation task is under execution, if user creates events in database, these events
would not be considered by the current task. These events would be considered for the next task
execution.

Refresh	Logical	Accounts

The Refresh Logical Accounts task type is used to refresh composite accounts for all identities that could,
potentially, have a logical account on the applications selected. This refresh occurs without performing
aggregation on the logical or tiered applications containing the links.

A logical account rule is run on each identity that has a logical link, or a link on the primary tier application of the
logical application. If no primary tier has been defined, the rule is run on all identities that have an account on
any of the tier applications.

The information scanned and updated is determined by the following criteria when the task is created or edited.
You can use any combination of options to build a task.

Table 34—Refresh Logical Accounts Options

Option Description

Logical
Applications

Select composite applications to refresh from the drop down-list.

Refresh identities
whose last refresh
date is before this
date

Refresh any identities that have not been refreshed since the date entered.

Enter and date manually or click the “...” icon to display the calendar view.

Refresh all
application
account
attributes

Perform an aggregation of identity information on each application and update the
account attributes on each identity as required.

Selecting this attribute initiates a full application aggregation for each identity
included in this task. This might impact the performance of IdentityIQ.

Refresh identity
attributes

Update identity cubes with any changes made to the attributes used to define
identities.

Refresh manager
status

Update all identity cubes in which the manager status has changed. For example, if a
user was promoted to manager in their department, their identity cube would be
updated by this task.

Refresh the
identity risk
scorecards

Update Identity Risk Scores with any information discovered by the scan performed
by this task.

Maintain identity
histories

Update the identity history by creating a snapshot of any identities with information
that has changed since the last refresh.
SailPoint IdentityIQ System Administration Guide 101

Task Types
Role	Index	Refresh

A role index refresh task updates all role information and creates the indexes needed to perform role searches.
You must run this task before performing any role searching.

Run	Rule

A task used to run an arbitrary rule with a series of name/value pairs.

You must have to configure some return statement as string. From your code, you have to return some
meaningful string to the task. In your task definition declare:

 <Returns>
 <Argument name="tskSuccess" type="string">
 <Prompt>Task Result:</Prompt>
 </Argument>
 </Returns>

And in your code:

String tskSuccess = "failed";
if (Do some condition check here) {
//Do something;
String tskSuccess = "Success";
}
return tskSuccess;

The rule is expected to return a string value representing its status. Any string other than Success results in a
failed task result.

Sequential	Task	Launcher

A sequential task launcher initiates the specified tasks in the order defined. This enables you to run tasks
sequentially without having to schedule each separately based on estimated run times.

Refresh the group
scorecards

Update Group Risk Scores with any information discovered by the scan performed by
this task.

Apply all active
policies

Scan for active policies and apply those policies to the identities included in the task.

A comma
separated list of
specific policy
names. When set
this overrides the
default policies

Scan for and apply only those policies included in this list to the identities included in
the task.

Number of
Refresh Threads

Number of threads to use simultaneously while running this task.

Table 34—Refresh Logical Accounts Options

Option Description
102 SailPoint IdentityIQ System Administration Guide

Task Types
System	Maintenance

SailPoint provides System Maintenance tasks with the IdentityIQ application, the Work Item Expiration Scanner,
Mitigation Expiration Scanner, System Maintenance, System Maintenance Object Pruner, Role Overlap Analysis,
and the Synchronize Roles task. These tasks are configured, by default, to run in the background of the
application and update score card, application, and role information as needed.

The Work Item Expiration Scanner checks for work items that were assigned but have not been completed by the
set expiration date.

The Mitigation Expiration Scanner checks for roles or entitlements for which the exceptions allowed during
certification have expired.

The Perform Maintenance task prunes identity snapshots, task results, access request attachments, and
certifications, escalates orphaned work items, and performs other background maintenance tasks.

The System Maintenance Object Pruner prunes objects in batches to improve performance. This task is not part
of the System Maintenance task pruning operations and is run independently when necessary. This task is always
run with partitioning enabled.

The Role Overlap Analysis performs impact analysis on a specified role. The task result name is annotated with
the name of the selected role so you can tell multiple analysis results apart.

The Synchronize Roles task synchronizes IdentityIQ roles with the roles on the identity management systems that
are configured to work through a provisioning provider.

Target	Aggregation

A target aggregation task scans applications and aggregates activity targets from those applications. These
targets are then used for activity monitoring and risk assessment.

Table 35—Sequential Task Launcher Options

Option Description

Enter the list of
tasks you would
like to run. Tasks
are run in the
order that they
are entered.

Select the tasks you would like to run and the order in which they should run.

Print log
statements to
indicate which
tasks have been
completed.

Select to print log statements so the sequential tasks can be tracked.

Cease execution if
one of the
executing tasks
encounters an
error.

Select to stop the sequential task if one of the tasks in the list fails. If this option is not
selected the task continues in order.
SailPoint IdentityIQ System Administration Guide 103

How to Complete Task Work Items
Select the applications to include in the scan. If no applications are specified, all applications are included. Click
the arrow to the right of the suggestion field to display a list of all target sources.

Select Include empty targets to aggregate targets with no associated users or groups. By default, empty
containers will not be included.

How	to	Complete	Task	Work	Items

Task work items are generated by task that require sign off on the results they create, and those sign off request
that are forwarded by a designated signer. Sign off request are displayed on your Home Page and you are notified
through an email when the work item is created.

Sign off decisions are retained with the task results for tracking purposes.

1. Click on a sign off type work item to display the sign off request.

2. Review the work item information in the Summary section.

3. Review the Comments section for any information associated with this work item.
Refresh

4. Click Click to View Task Results in the Details sections to display the Task Results page.

5. Click Return to Work Item when you have completed your review of the task results.

6. Click on an action button to open the associated comments dialog and conclude this work session.

If you sign off on, or reject the sign off request, the status of the task results is updated to reflect that deci-
sion. You must specify a recipient If you forward the work item.
104 SailPoint IdentityIQ System Administration Guide

Alerts Page
Chapter	6:	Alerts
Alerts are created using IdentityIQ File Access Manager (FAM) based on activity data - actions users take on
resources that are part of an application that FAM is monitoring. FAM can be configured to create alerts when
the user action is considered unexpected, potentially risky, or inappropriate. It is possible to configure alerts for
any behavior. You can choose to use this functionality more broadly (e.g. for non-risky or non-problematic
activities that someone wants to use as a process trigger).

This integration additionally enables you to trigger actions in IdentityIQ in response to an alert. Specifically, alerts
aggregated into IdentityIQ can be used to drive three different response actions. A single alert can trigger more
than one response action:

• Launch a certification

• Launch a workflow

• Send an email notification

Alerts	Page

Use the Alerts page to view existing alerts for your enterprise. To limit the number of alerts displayed in the
table, use the filtering options.

Table 36—Filter Alerts Definitions

Column Name Description

Name The name of the alert.

Source Application associated with the alert.

Native Id Native identifier of the application with which the alert is associated.

Type Alert type.

Target Type Type of the object that triggered the alert.

Target Name Name of the object that triggered the alert.

Alert Date Start Date and time at which this alert was triggered.

Alert Date End Date and time at which this alert expires.

Last Processed Start Last date and time this alert was triggered.

Last Processed End Last date and time this alert process finished.

Acted Upon Select True if this alert matched an alert definition and an alert action was
triggered.
SailPoint IdentityIQ System Administration Guide 105

Alert Definitions Page
Alert	Definitions	Page

Use the Alert Definition page to view a list of existing alert definitions. The Alerts page contains the following
information:

Create	Alert	Definition

The Create Alert Definition page contains the following information:

Table 37—Alert Definitions Page Field Description

Field Name Description

Name A descriptive name of this alert. This is the name that displays on the Alerts page.

Display Name Label that is displayed on the alert.

Description A brief description of the alert definition.

Created The date and time the alert definition was created.

Status The status of the alert definition:

Active – the alert definition is currently being used

Inactive – the alert is not being used

Table 38—Create Alert Definition

Field Name Description

Name A descriptive name of this alert. This is the name that displays on the Alerts page.

Display Name Label that is displayed on the alert.

Description A brief description of the alert.

Owner The alert owner, not necessarily the identity who triggered the alert.

Match Rule Enables more complex matching logic.

+Add Option to add a Match Term.

Source Application name that triggers the alert.

Attribute The display name of an account attribute derived from the attribute and its associated
application.

Value Value for the selected attribute that will trigger an alert during alert processing.

Action Type Action to be taken when the alert is created. This can either be a notification,
certification, or a workflow, or a combination of the available actions.

Email Template Template used for the notification email. If none is selected, a system default is used.

Email Recipients List of users to receive the alert notification.
106 SailPoint IdentityIQ System Administration Guide

Edit Alert Definitions
How	to	Create	an	Alert	Definition

Alerts are created using the Alert Definitions tab. Use this procedure to create new alert.

Procedure

1. Click the Alert Definitions tab on the Alerts page.

2. Click +New.

3. Enter the alert information.

See "Create Alert Definition" on page 106 for detail description of the Alert Definition page.

4. Click Save to save the alert and return to the Alerts page.

Edit	Alert	Definitions

Use the Edit Alert Definition to edit existing rules. The Edit Alert Definitions page contains the following

information:

Field Name Description

Name A descriptive name of this alert. This is the name that displays on the Alerts page.

Display Name Label that is displayed on the alert.

Description A brief description of the alert.

Owner The alert owner, not necessarily the identity who triggered the alert.

Source Application name that triggers the alert.

Attribute The display name of an account attribute derived from the attribute and its associated
application.

Value Value for the selected attribute that will trigger an alert during alert processing.

Match Rule Enables more complex matching logic.

Action Type Action to be taken when the alert is created. This can either be a notification,
certification, or a workflow, or a combination of the available actions.

Workflow Defines the workflow structure and steps involved in the workflow processing.

Email Template Template used for the notification email. If none is selected, a system default is used.

Email Recipients List of users to receive the alert notification.
SailPoint IdentityIQ System Administration Guide 107

Edit Alert Definitions
How	to	Edit	an	Alert	Definition

Alerts are edited using the Alert Definitions tab. Use this procedure to edit existing alerts.

Procedure

1. Click the Alert Definitions tab on the Alerts page.

2. Select an alert and lick Edit in the Actions column.

3. Enter the alert information.

See "Edit Alert Definitions" on page 107 for detail description of the Edit Alert Definitions page.

4. Click Save to save the alert and return to the Alerts page.

How	to	Filter	Alerts

Use the filtering options to limit the number of alerts displayed in the table. You can filter by any of the 11 fields.
Use this procedure to filter through existing alerts.

Procedure

1. Click the Alert tab on the Alerts page.

2. Click Filter.

3. Enter filtering information.

4. Click Apply to save the filter options.
108 SailPoint IdentityIQ System Administration Guide

Work Item Administration
Chapter	7:	Work	Items
The Work Items page provides a central location where you can view and manage work items that are assigned
to you or to a workgroup of which you are a member. A work item is anything that requires an action before it
is completed. Work items can be entire processes, such as access reviews, or any piece of a process, such as the
approval of one entitlement for one user on one application.

Work	Items	on	the	Home	Page

When a work item is created and you have a Notifications card on your Home page, the Notifications card
displays the number of work items assigned to you. To access the work items, click the card or go to the
navigation bar and click My Work -> Work Items.

To manage work items, refer to the following:

• "Work Item Administration" on page 109

• "Work Item Archive" on page 110

Work	Item	Administration

Note: To edit priorities in IdentityIQ, the “Allow priority editing on work items” setting must be
selected on the Work Item tab IdentityIQ Configuration page located under the gear icon.

If a work item is created for a user who is no longer active in IdentityIQ, it is forwarded to the manager or
supervisor for that user. If no manager is listed, the work item is assigned to the IdentityIQ administrator. Use
escalation rules to determine the proper escalation path for orphaned work items. Escalation rules are created
and set during the configuration and implementation of the product. Orphaned work items are discovered and
identified during the Perform Maintenance task.

Use Sort By to customize the sort order of the work item list, or use the newest to oldest icon to flip the list.

Use Filter to limit the number of work items displayed, or search on a specific work item using the search field.

Click View Archive to see a list of completed work items.

Use the Show... drop-down list to select the work items you would like to see.

The Work Items page displays the following information:

Table 39—Work Item Page

Column Name Description

Priority Specifies the priority level to which the work item was designated. Use the
drop-down list and edit the priority level. This edit is visible in the Work Items
Manager and Inbox of the identity to whom the work item is assigned, as well
the outbox of the person that assigned the work item.

Type The type of work item.

Name The name of the work item.

Created The date the work item was assigned.

ID Identification number assigned to the work item.
SailPoint IdentityIQ System Administration Guide 109

Work Item Administration
Click the information icon to see the Details dialog containing work item and identity details, as well as any
forwarding history associated to the work item.

Note: Work items can only be assigned if the assignee of the work item is a member of the same
workgroup as the person who is assigning the work item.

Click the forward icon to open the Forward Work Item dialog.

The Manage Work Items table includes the following types of work items:

Work	Item	Archive

Use the Work Item Archive page to view completed work items. Only work items types that are configured in
System Setup can be viewed on the Work Item Archive page. To access the system settings for Work Items,
navigate to the IdentityIQ Configuration > Work Items tab under the gear icon.

Click the drop-down list to specify if your table displays all work items assigned to you and any groups to which
you belong, only your own, personal work items or only the work items assigned to a selected workgroup.

To customize the information displayed in the Work Item Archive table, mouse over one of the header rows, click
the drop-down arrow to reveal the sub-menu and select the desired columns from the Columns pop-out menu.

Click a line item launch the View Work Item page which displays detailed information about the work item.

Owner The name of the identity who has purview over the work item.

Requestor The name of the user who assigned this work item to you.

Table 40—Work Item Archive Column Descriptions

Column Name Description

ID Identification number assigned to the work item.

Name The name of the work item.

Type The type of work item.

Requestor The name of the user who assigned this work item to you.

Workgroup Displays the workgroup to which this work item is assigned if applicable.

Owner The name of the identity who has purview over the work item.

Completed By The date the work item was completed

Created The date the work item was assigned.

Modified The date changes, if any, were made to the work item.

Archived The date the work item was archived.

Priority Specifies the priority level to which the work item was designated. Use the
drop-down list and edit the priority level. This edit is visible in the Work Items
Manager and Inbox of the identity to whom the work item is assigned, as well
the outbox of the person that assigned the work item.

Access Request ID Identification number designated for the Lifecycle Manager access request.

Table 39—Work Item Page

Column Name Description
110 SailPoint IdentityIQ System Administration Guide

Launching the Console
Chapter	8:	IdentityIQ	Console
The IdentityIQ Console is the command line utility for interfacing with IdentityIQ. This document lists the console
commands and their descriptions.

Launching	the	Console

The IdentityIQ console requires the System Administrator capability.

By default, the console tries to authenticate with the default user/password spadmin/admin. If authentication
fails, you are prompted for a user name and password. Specify the user name and password on the command
line.

For example:
 iiq console -u amy.cox -p mypassword

The console prompts for user input if the password is omitted, and will not launch if the credentials supplied are
not associated with an identity that has console access.

Note: Authentication is disabled if there are no identities. This case is encountered during IdentityIQ
setup, before init.xml is imported.

The IdentityIQ Console (iiq console) is launched by executing the iiq.bat file found in the Installation
Directory/WEB-INF/bin directory. From a command prompt, launch the console with the command as
shown for each operating system type:

Note: The -j option turns on the JLine Java library for handling console input, enabling some
ease-of-use functions such as command history recall. Command history recall is enabled in
Windows without this library, so this parameter is not required in the Windows environment.

The > prompt character indicates that the console is running and ready to accept commands.

Viewing	the	List	of	Commands

The help command displays a list of all commands available in the console along with a short description of each.
At the command prompt, enter help or? to see this full list of available commands.

Table 41—Console Launch Commands

Operating System Command

Windows iiq console

Unix ./iiq console -j

Table 42—List of Console Commands

Command Description

? Display command help
SailPoint IdentityIQ System Administration Guide 111

Viewing the List of Commands
help Display command help

echo Display a line of text

quit Quit the shell (same as exit)

exit Exit the shell (same as quit)

source Execute a file of commands

properties Display system properties

time Show how much time a command takes to run

xtimes Run a command x times

about Show application configuration information

threads Show active threads

logConfig Reload log4j configuration

Objects

dtd Create dtd

summary Summarize objects

classes List available classes

list List objects

count Count objects

get View an object

checkout Checkout an object to a file

checkin Checkin an object from a file

delete Delete an object

rollback Rollback to a previous version

rename Rename an object

import Import objects from a file

importManagedAttributes Import managed attribute definitions from a CSV file

export Export objects to a file

exportManagedAttributes Export managed attribute definitions to a CSV file

exportJasper Exports only the jasperReport xml contained in a JasperTemplate object

associations Show target associations for an object

Identities

identities List identities

snapshot Create an identity snapshot

score Refresh compliance scores

Table 42—List of Console Commands

Command Description
112 SailPoint IdentityIQ System Administration Guide

Viewing the List of Commands
listLocks List all class locks

breakLocks Break all class locks

Tasks

tasks Display scheduled tasks

run Launch a background task

runTaskWithArguments Launch a task synchronously with arguments

terminate Terminate a background task

terminateOrphans Detect and terminate orphaned tasks

restart Restart a failed task if possible

send command Send an out-of-band task command

taskProfile Display task profiling report

Certifications

certify Generate an access certification report

cancelCertify Cancel an access certification report

archiveCertification Archive and delete an access certification report

decompressCertification Decompress an access certification archive

Groups

refreshFactories Refresh group factories (but not groups)

refreshGroups Refresh groups (but not factories)

showGroup Show identities in a group

Workflow

workflow Start a generic workflow

validate Validate workflow definition

workItem Describe a work item

approve Approve a work item

reject Reject a work item

wftest Run the workflow test harness

Tests

rule Run a rule

parse Parse an XML file

warp Parse an XML object and print the re-serialization

notify Send an email

authenticate Test authentication

Table 42—List of Console Commands

Command Description
SailPoint IdentityIQ System Administration Guide 113

Viewing the List of Commands
authenticateWithOptions Test authentication with options

simulateHistory Simulate trend history

search Run a simple query

textsearch Run a full text search

certificationPhase Transition a certification into a new phase

impact Perform impact analysis

event Schedule an identity event

expire Immediately expire a workitem that has an expiration configured. If the
workitem is type Event it'll also push the event forward with the workflower

connectorDebug Call one of the exposed connector methods using the specified application

encrypt Encrypt a string.

sql Execute a SQL statement

hql Execute a search based on a Hibernate Query Language statement.

updateHql Update the hql search.

date Displays the current system date/time and its UTIME (universal time) value
(Optional UTIME parameter causes the command to display the date/time
corresponding to the provided UTIME value.)

shell Escapes out to the command line and run the command specified.

meter Toggles metering on and off; while metering is on, the console reports some
timing statistics for each command executed. Meter information is displayed
after the results of each command as it is executed.

compress Compress the contents of a file to a string that can be included within an XML
element.

uncompress Return a compressed, Base64-encoded file to its uncompressed format.

clearEmailQueue Remove any queued emails that have not been sent

provision Evaluate a provisioning plan

lock Lock an object

unlock Break a lock on an object

showLock Show lock details

clearCache Clear the object cache

service Service management

oconfig Analyze ObjectConfigs

plugin Install and manage plugins

recommender Manage and test recommendations

Table 42—List of Console Commands

Command Description
114 SailPoint IdentityIQ System Administration Guide

Command-Line Parameters
Command-Line	Parameters

You can use parameters with the iiq console commands to manage command behavior.

Command	Syntax

The syntax for any console command that requires parameters can be determined by entering that command
with no arguments.

> workflow

usage: workflow name [varfile]

Note: Command names are case sensitive and must be entered as shown in the command list.
Parameters are not case sensitive.

Some commands take no arguments and execute if entered. This table contains a list of the commands that
require no arguments.

Table 43— List of Command-Line Parameters

Command Description

-u <username> -p
<password>

Run the console using the supplied username and password for
authentication.

Example: -u mary.johnson -p mypwd

If you provide a username but omit the password, the iiq console prompts
for the password value.

-j Used in Unix systems only. Adds improved command editing and history
support. Use cursor-up and cursor-down to navigate console command
history.

-h <hostname> Override the hostname used for the console.

Example: -h consoleA

-c <command> Run the given command, and then exit.

Example: -c "list Certification"

-f <filename> Run the commands read from the provided file, then exit.

Example: -f myCommands.txt

-e <CSV of services to start> Automatically start the services specified in the provided comma-separated
list.

Example: -e Heartbeat,Task,Reanimator

-heartbeat Force the Heartbeat service to automatically start. This is the equivalent to
-e Heartbeat
SailPoint IdentityIQ System Administration Guide 115

Command Syntax
Syntax	for	Redirecting	Command	Output

Most of the commands report data or error messages to the console or standard out (stdout) for the system. The
output for any command can be redirected to a file by specifying > filename at the end of the command.

This example redirects the output from the get command to a file:

> get identity Adam.Kennedy > c:\output\AdamKennedyID.xml

Table 44—Console Commands That Do Not Require Arguments

Command Action

? or help Lists all available console commands

quit or exit Exits the console shell

classes Lists all classes

refreshGroups Refresh group indexes (Optional group name or ID can be specified)

refreshFactories Refresh set of GroupDefinitions for a GroupFactory (Optional factory name or ID can
be specified)

logConfig Reloads log4j configuration from log4j2.properties file

summary Lists all classes and the count of objects of that class in the system

properties Displays Java properties of the server where IdentityIQ is installed

about Displays application configuration information

threads Shows a list of active threads

tasks Writes a list of all currently scheduled tasks, in a columnar layout, to the console
(stdout)

identities Writes the Name, Manager, Roles, and Links for each Identity in the system to the
console (stdout)

date Displays the current system date/time and its UTIME (universal time) value (Optional
UTIME parameter causes the command to display the date/time corresponding to the
provided UTIME value.)

status Reports current running status of the task and request schedulers

meter Toggles metering on and off; while metering is on, the console reports some timing
statistics for each command executed. Meter information is displayed after the results
of each command as it is executed.

clearEmailQueue Deletes all queued but unsent email messages

clearCache Clears the IdentityIQ object cache
116 SailPoint IdentityIQ System Administration Guide

Console Commands
Console	Commands

In this document, the list of console commands is subdivided based on how frequently they are likely to be used
in a production environment.

• Commonly Used Commands — commands that system administrators should know well and use
frequently.

• Less Commonly Used Commands — commands that might need to be run periodically, such as when
working with SailPoint Support to resolve an issue, but are not used regularly.

• Seldom Used Commands — developer commands that are rarely useful in a production environment.

Commonly	Used	Commands

This section lists and documents the syntax and actions of the most commonly used console commands.

Help	and	?

These two commands list all the available console commands.

Exit	and	Quit

These two commands exit the console shell, returning the user to the operating system command prompt.

Source

The source command runs commands from a script file. The commands on each line in the file are executed by
the console sequentially.

Syntax ?
help

Examples > ?

> help

Result Lists all commands available in the console

Syntax exit
quit

Examples > exit

> quit

Result Exits console shell and returns user to the operating system command prompt

Syntax source filename
SailPoint IdentityIQ System Administration Guide 117

Console Commands
List

The list command lists all objects of the specified class, constrained by any specified filter. If this command is
specified without arguments, the command syntax is displayed, followed by a list of all available classes whose
objects can be listed. This is helpful in locating objects within the system and in identifying object names to use
as parameters on other commands.

Get

The get command displays the XML representation of the named object.

Note: This command only displays the object to the console (stdout), it does not export the object.
The output can be redirected to a file if the user has write access to the server's file system.

> get identity Adam.Kennedy > c:\output\AdamKennedyID.xml

Other alternatives for getting the XML representation of an object into a text file include:

• copying and pasting contents of this command's stdout into a text file

• retrieving the object's XML from the IdentityIQ Debug pages

• using the checkout command (described next) to write the XML representation of an object to a text file

Checkout

The checkout command writes a copy of the XML representation of the requested object to the specified
filename. The file can be used for review or for moving objects from one environment to another, for example,
from the user acceptance testing environment to production. Organizations doing custom development on rules,
workflows, etc. might use checkout to extract any of these objects to a file for modification.

Examples source c:\data\cmdfile.txt

Result Runs the console commands in the c:\data\cmdfile.txt file sequentially

Syntax list classname [filter]

filter: xxx - names beginning with xxx

 xxx* - names beginning with xxx

 *xxx - names ending with xxx

 xxx - names containing xxx

Examples > list application ent*

Result Lists all application objects whose names begin with ent

Syntax get classname <objectnamere or ID>

Examples > get identity Adam.Kennedy

Result Displays the Adam.Kennedy Identity in XML format
118 SailPoint IdentityIQ System Administration Guide

Console Commands
The -clean option can be used to remove all values that do not transfer between IdentityIQ instances, such as
created and modified dates as well as globally unique ID values (GUIDs). Specifying the -clean option with no
qualifiers cleans the id, created, modified, and lastRefresh attributes. The -clean option can also be used to
explicitly clear specific fields by name. The fields to clear must be listed in a comma separated list.

Checkin

The checkin command reads a file containing an object's XML representation and saves the object into the
database. If the object is a workItem, the command invokes the workflower to process the workItem. If the
object is a bundle (role) and the approve parameter is specified, a role approval workflow is launched. For all
other object types, and for bundles that are submitted without the approve parameter, the object is saved into
the database.

Note: The command's syntax parsing allows the approve parameter to be specified for any object but
it only impacts the processing on Bundle objects.

Note: If an Import file is specified as the input file for this command, only the first object in the file is
checked in; the rest are ignored and a warning message is displayed to the console (stdout).

Delete

Note: This action cannot be undone and should be used with extreme caution and only in rare
circumstances.

The delete command deletes the named object and removes all of its owned, or subordinate, objects. In a
production environment, this is not recommended unless specifically directed by SailPoint Support.

Syntax checkout class name <objectname or ID> file [-clean [=id,created…]]

Examples > checkout rule “Cert Signoff Approver” certrule.xml

Result Writes a copy of the Cert Signoff Approver rule's XML representation to the file
certrule.xml

Syntax checkin filename [approve]

Examples > checkin newRole.xml approve

> checkin bobSmithID.xml

Result First example saves Identity Bob Smith, as represented by the XML in bobSmithID.xml, into
to the database; overwrites existing or adds new record

Second example launches an approval workflow for the bundle object represented by the
XML in newRole.xml

Syntax delete classname <objectname or ID>

Examples > delete identity bob.smith
SailPoint IdentityIQ System Administration Guide 119

Console Commands
Note: Wildcards can be used on the <object name or ID> argument:
— * - all objects of the specified class (use with extreme caution!)
— xxx - all objects whose name or ID contains xxx

Import

The import command imports objects into IdentityIQ from an XML file. This command can be used on a file that
contains a Jasper report, a SailPoint import file, or an object of one of the standard object classes. The file
contents are evaluated and processed based on the first tag in the file:

• JasperReport: Jasper report

• SailPoint: SailPoint import object; can contain multiple regular objects in one file as well as an
ImportAction tag that directs how the contents of the file are processed, for example, merge, include,
execute, logConfig.

• Anything else: assumed to be a single regular object

This is one of the most commonly used commands. Installations who manage their workflows and rules in an
external source code control system, for example, use this command to bring changes to those objects into
IdentityIQ once they have been modified in their external XML representations.

Result Removes Identity Bob Smith and all of his associated objects from the system

Syntax import [-noids] filename

Examples > import init.xml

> import -noids init.xml

Result The first example Imports the contents of the file init.xml into the IdentityIQ database.

In the second example, all ID attributes are removed before parsing occurs.

This action is a normal part of the initialization process for IdentityIQ.

Syntax import [-noids][-noroleevents] filename

Examples > import -noids bundles.xml

> import -noids -noroleevents bundles.xml

Result The first example allows user to import the events. It removes all ID attributes before
parsing.

The second example disables generation of role change events for role propagation.

Select ‘Allow Role Propagation’ option from the Global Settings -> IdentityIQ Configuration
-> Roles option in UI.
120 SailPoint IdentityIQ System Administration Guide

Console Commands
Export

The export command writes all objects of a given class to a specified filename. This is commonly used in gathering
objects from IdentityIQ to deliver to SailPoint Support as resources in resolving tickets. It is also used for moving
sets of objects between environments and for managing objects outside of IdentityIQ, such as storing workflows
and rules in a source code control system.

More than one class can be exported at a time to the same file by specifying all the desired class names as
arguments to the command. If the export command is specified without any class names, all objects of all classes
are exported to the specified filename.

ListLocks

The listLocks command lists all locks held on any objects of the named class. At this time, Identity is the only class
for which this command operates.

BreakLocks

Note: This command should be used with caution. Locks are useful in maintaining data integrity, and
breaking them at the wrong time can potentially permit conflicting updates that can result in
data corruption.

Note: The unlock command can be used to break a single lock whereas this command breaks all locks
held on any object in the specified class.

If a process is holding a lock but is unable to perform the required action, the lock can cause problems in other
processes' performance as well. The breakLocks command can be used to release locks forcibly. At this time,
Identity is the only class for which this command functions.

Syntax export [-clean[=id,created...]] filename [classname classname …]

Examples > export -clean workflows.xml workflow

> export IdLink.xml identity link

Result The first example exports the entire set of workflow objects from IdentityIQ to the file
workflows.xml, removing values from the id, created, modified, and lastRefresh
attributes.

The second example exports all identities and links to a single file.

Syntax breakLocks classname

Examples > breakLocks identity

Result Releases all locks held on any identity object in the system and reports to the console the
identity name, lock holder, and UTIME value for the lock date/time and the lock expiration
date/time.
SailPoint IdentityIQ System Administration Guide 121

Console Commands
Rule

The rule command runs a rule defined in the system. The rule to run is specified as a command parameter. If any
input variables must be passed to the rule, they must be entered in a variable file, specified as an XML Map. The
file name is then also passed as a parameter to the command.

This command can be used for testing or executing existing system rules. It can also be used to run any beanshell
code snippet against the IdentityIQ database. The code is created as a rule and loaded into the system and then
executed from the console. Support uses rules like this for data cleanup.

Parse

The parse command validates an XML file. If it is in valid form and its tags match the IdentityIQ DTD, it runs
successfully and no information is printed to the console (stdout). If errors are encountered, a runtimeException
is printed to the console describing the error.

Less	Commonly	Used	Commands

These commands are not frequently used in a production environment. However, it is helpful to understand and
be able to use them when the need arises.

DTD

The DTD command writes the IdentityIQ DTD (Document Type Definition) to the specified file.

Classes

The classes command lists all classes accessible from the console. These are frequently used as parameters to
other commands so this list can be helpful in entering correct arguments on those commands.

Syntax rule <rulename or ID> [varfile]

Examples > rule “Check Password Policy” c:\data\pwdParams.xml

Result Runs the Check Password Policy rule, passing its input variables through the file
c:\data\pwdParams.xml

Syntax parse filename

Examples > parse c:\data\newWorkflow.xml

Result Validates the XML in the file c:\data\newWorkflow.xml and reports any errors to the
console

Syntax dtd filename

Examples > dtd c:\DTD\IdentityIQ.dtd

Result Writes the IdentityIQ DTD to the file c:\DTD\IdentityIQ.dtd
122 SailPoint IdentityIQ System Administration Guide

Console Commands
Count

The count command returns a count of the objects of the specified class.

ImportManagedAttributes

The importManagedAttributes command is used to set managed attribute values, including localized
descriptions, through a CSV file import. This can be used to update existing managedAttributes or to create new
ones.

The filename can be specified with an absolute path or can be specified relative to the current working directory.
These are the specific requirements for the import file contents:

• The first line in the file must be a comment line (starting with #) that contains the column names for the
data records. Column names must be specified in a comma-separated format. All column names must
match managedAttribute standard or extended attributes or specify a locale/supported language.

• Subsequent comment lines can be used to specify default values for attributes that are not contained in
the data records. For example, if the whole file relates to a single application, the application name could
be set as a default through a single comment line.

• Blank lines are permitted in the file, and are ignored, but cannot precede the first comment line.

• The data records must consist of comma-separated data values.

Note: Only types Entitlement and Permission are valid. Group managedAttributes are stored in
IdentityIQ as a subcategory of Entitlement type managedAttributes.

• Required attributes are type, application, attribute, and value. If type is not specified in the file, type
Entitlement is assumed. The others three properties must be specified in the file. Type, application, and
attribute can be specified through the data columns or with a single default value in extra comment lines.
The value attribute must be in the data columns and cannot have a default value.

• The data values in the columns named to match supported languages should contain the description to
use for that locale.

Example	File	Contents:

value, displayName, en_US, owner
owner=Jeff.Wilson
application=AD
attribute=MemberOf
type=Entitlement

Syntax classes

Examples > classes

Result Lists class names for all classes accessible to the console

Syntax count classname

Examples > count identity

Result Displays the count of Identity objects in the system
SailPoint IdentityIQ System Administration Guide 123

Console Commands
"CN=administrators,CN=Roles,DC=iiq,DC=com", Admins, "Administrators group",
"CN=VPN,CN=Roles,DC=iiq,DC=com", VPN, "Remote Workers", Bob.Smith

Note: The test option causes the command to parse and validate the file without saving changes to
the database.

ExportManagedAttributes

The exportManagedAttributes command exports either object properties or descriptions for
managedAttributes to a CSV file. This is used to make mass changes to the managed attributes definitions or for
collecting all the managed attributes in one file to review as a group.

Application and language are both optional arguments and can be specified in either order. At most one
application and one language can be specified at a time. If no application name is specified, managed attributes
for all applications are exported. If a language is specified, only the core identifying properties of the managed
attributes (type, application, attribute, value) and the descriptions for the specified locale are exported. If a
language is not specified, all other object properties except descriptions are exported.

The file format generated by this command can be used in the importManagedAttribute command, so this
command can be used to write values to a file for editing and reimporting. When an application name is specified
on the export command, the application is not shown in the data rows but is specified as a default in the file
header comments, as described and illustrated in the command details.

Syntax importManagedAttributes filename [test]

Examples > importManagedAttributes “c:\data\managedattributes.csv”

Result Imports managed attribute data from the file c:\data\managedattrbutes.csv,
updating existing attributes or creating new ones from the data

Syntax exportManagedAttributes filename [application] [language]

Examples > exportManagedAttributes “c:\data\AdamManAttrDesc.csv” ADAM en_US

Result Exports the managed attribute description on ADAM application to the file
c:\data\AdamManAttrDesc.csv.
124 SailPoint IdentityIQ System Administration Guide

Console Commands
Run

The run command starts execution of a task that requires and accepts no arguments. Three optional parameters
can be specified for this command: trace, profile, and sync.

• Trace — writes to the console (stdout) a trace of what happens as the task is run, depending on how the
task's tracing code is written.

• Profile —displays the timing of certain phases of the task, the details displayed depend on the task's
profile code.

• Sync — runs the task in synchronous execution mode, as opposed to scheduling it to run in background.
If sync is specified, the control returns to the console only after the task has completed and any error
messages are written to the console. If sync is not specified, the task is launched in the background and
the results of the task are viewable in the taskResults object and are accessible from the console or from
the user interface under Setup -> Tasks -> Task Results.

RunTaskWithArguments

The runTaskWithArguments command starts execution of a task that requires arguments. These tasks are
always run in synchronous execution mode. This can only be used for tasks that accept arguments of simple data
types; specifying an object as an argument is not possible here.

Restart

The restart command restarts execution of a task that failed.

RefreshFactories

The refreshFactories command can be specified with no arguments to refresh all group factories or with a
specific GroupFactory name. Refreshing the group factory means identifying the group values that define each
of the groups (or GroupDefinition objects). It does not refresh the list of Identities that make up each group or
the statistics gathered for each group - just the list of groups themselves.

Syntax run taskname [trace] [profile] [sync]

Examples > run “Refresh Risk Scores”

Result Runs the Refresh Risk Scores task in background

Syntax runTaskWithArguments taskname [arg1=val1,arg2=val2,…]

Examples > runTaskWithArguments “Identity Refresh”
refreshLinks=True,promoteAttributes=False

Result Runs the Identity Refresh task, refreshing Links for the Identities

Syntax restart taskResultName

Examples > run “Refresh Risk Scores”

Result Restarts the Refresh Risk Scores task in background if possible
SailPoint IdentityIQ System Administration Guide 125

Console Commands
RefreshGroups

The refreshGroups command refreshes the group indexes for all groups or for the specified group named as a
command argument. The group indexes are collections of statistics for identities that are part of the group. The
statistics include number of members, number of certifications due for certification owners in the group, number
of certifications owned and completed on time by members of the group, and risk score information for
members of the group. RefreshGroups only applies to GroupDefinitions that are indexed (attribute
indexed=”True”).

ShowGroup

The showGroup command shows the membership (Identities) of the group named as an argument to the
command.

Workflow

The workflow command launches the workflow specified as a command parameter. Input variables must be
entered in a variable file to get passed to the workflow. A variable file is specified as an XML Map. The file name
is then also passed as a parameter to the command. When the workflow is successfully launched, the XML for
the workflowCase is printed to the console (stdout).

The varfile should contain an attributes map like the example shown below. This example map passes an identity
name and a provisioning plan object to the workflow.

Syntax refreshFactories [<factorname or ID>]

Examples > refreshFactories

Result Refreshes the GroupDefinition list associated with each GroupFactory in the system

Syntax refreshGroups [groupname or ID]

Examples > refreshGroups

Result Refreshes index information for all indexed groups

Syntax showGroup <groupname or ID>

Examples > showGroup Finance

Result Lists all Identities who are members of the Finance group.

Syntax workflow <workflowname or ID> [varfile]

Examples > workflow “LCM Provisioning” c:\data\provFile.xml

Result Runs the LCM Provisioning workflow, passing its input variables through the file
c:\data\provFile.xml
126 SailPoint IdentityIQ System Administration Guide

Console Commands
<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE Attributes PUBLIC "sailpoint.dtd" "sailpoint.dtd">
<Attributes>
 <Map>

 <entry key="identityName" value="Adam.Kennedy"/>
 <entry key="plan">
 <value>
 <ProvisioningPlan>
 <AccountRequest application="IIQ" nativeIdentity="Adam.Kennedy" op="Modify">
 <AttributeRequest name="assignedRoles" op="Add" value="PRISM User">
 <Attributes>
 <Map>
 <entry key="comments" value="req A"/>
 </Map>
 </Attributes>
 </AttributeRequest>
 </AccountRequest>
 <AccountRequest application="IIQ" nativeIdentity="ABC_12345" op="Modify">
 <AttributeRequest name="assignedRoles" op="Add" value="Test Role B2">
 <Attributes>
 <Map>
 <entry key="comments" value="req B"/>
 </Map>
 </Attributes>
 </AttributeRequest>
 </AccountRequest>
 </ProvisioningPlan>
 </value>
 </entry>
 </Map>
</Attributes>

Validate

The validate command can validate a workflow or a rule. Input variables must be entered in the variable file to
be passed to a workflow or rule. The variable file is specified as an XML map and the file name is passed as a
parameter to the command. Validation errors are printed to the console (stdout).

See “Workflow” on page 126 for an example of the varfile format.

Wftest

The wftest command is used to one or more workflows. The WorkflowTestSuite can be the name of a
WorkflowTestSuite object or a file containing one.

Syntax validate <rule or workflow name or ID> [varfile]

Examples > validate “LCM Provisioning” c:\data\provFile.xml

Result Validates the LCM Provisioning workflow, passes the input variables through
c:\data\provFile.xml, and displays any validation errors

Syntax wftest WorkFlowTestSuite name | filename

Examples > wftest c:\test\workflowTest.xml name | c:\test\workflowTestOut.xml
SailPoint IdentityIQ System Administration Guide 127

Console Commands
SQL

The sql command executes a SQL statement. It can execute SQL specified inline with the command or it can read
the SQL from a file. Only one SQL statement can be executed at a time. The output can be printed to the console
(stdout) or redirected to a file. Select, update, and delete SQL statements can be executed. Update and delete
actions cannot be undone.

Provision

The provision command processes the specified provisioning plan for the specified identity but does not save the
information. This is used to test a connector or to test a provisioning plan. Errors are reported to the console. If
the provisioning action would succeed, nothing is reported to the console.

The provisioning plan file should contain a provisioning plan in XML format. For example:

<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE ProvisioningPlan PUBLIC "sailpoint.dtd" "sailpoint.dtd">
<ProvisioningPlan>
 <AccountRequest application="IIQ" nativeIdentity="ABC_12345" op="Modify">
 <AttributeRequest name="assignedRoles" op="Add" value="Test Role B1">
 <Attributes>
 <Map>
 <entry key="comments" value="req A"/>
 </Map>
 </Attributes>
 </AttributeRequest>
 </AccountRequest>
 <AccountRequest application="IIQ" nativeIdentity="ABC_12345" op="Modify">
 <AttributeRequest name="assignedRoles" op="Add" value="Test Role B2">
 <Attributes>
 <Map>
 <entry key="comments" value="req B"/>

Result Tests the workflows and sends the outcome to the workflowTestOut file.

Syntax sql sqlStatement | -f inputFileName

Examples > sql “select * from sptr_identity” > c:\data\Identities.dat

> sql -f c:\sql\SelectIdentities.sql

Result The first example executes the specified select statement and writes the results to
c:\data\Identities.dat.

The second example reads the SQL from c:\sql\SelectIdentities.sql, prints the
SQL to the console (stdout), and displays the query results to the console (stdout).

Syntax Provision <identityname or ID> provisioningPlanFfilename

Examples > provision Adam.Kennedy c:\data\provFile.xml

Result Tests the provisioning plan contained in c:\data\provFile.xml against Identity
Adam.Kennedy and reports any exceptions to the console
128 SailPoint IdentityIQ System Administration Guide

Console Commands
 </Map>
 </Attributes>
 </AttributeRequest>
 </AccountRequest>
</ProvisioningPlan>

Lock

The lock command obtains a persistence lock on an object. The object's class and ID or name must be specified.
By default, the lock is issued to the username Console, but a different username can be specified in the
command's lockName parameter. The lock automatically expires after 5 minutes.

Note: Identity objects are the only objects that can be locked. Attempts to specify a different object
type in this command results in a syntax error exception.

Unlock

The unlock command releases the lock on an object. The object's class and ID or name must be specified. If the
object is not locked, the message “Object is not locked” is displayed. If it is locked, the lock is released and the
message “Lock has been broken” is displayed.

ShowLock

The showLock command lists the lock owner, locked date/time, and lock expiration date/time for a locked
object. The object's class and ID or name must be specified to view its lock information. The message Object is
not locked is displayed if the object is not currently locked. If the lock has expired, the lock information is shown
but is prefaced with the message Lock has expired.

Syntax lock classname <objectID or name> [lockName]

Examples > lock identity John.Smith

Result Obtains a persistence lock for Console on the identity record for John.Smith

Syntax unlock classname <objectID or name>

Examples > unlock identity John.Smith

Result Breaks the lock on the identity record for John.Smith

Syntax showLock classname <objectID or name>

Examples > showLock identity John.Smith

Result Displays lock information (owner, date/time, expiration date/time) on the identity record
for John.Smith or displays Object is not locked
SailPoint IdentityIQ System Administration Guide 129

Console Commands
Oconfig

The oconfig command list all extended attributes defined for each class that supports extended attributes. The
list indicates the extended attribute numbers and corresponding attribute names on each class. Identity
extended attributes which link to other Identities are stored separately in extended identity attribute fields, so
those are listed in a separate Extended Identity Attributes sub-list under the Identity ObjectConfig. The
objectConfig detail displays No attributes defined if no extended attributes are defined for a given class. An
Object not found message is displayed if no objectConfig exists for the class.

TextSearch

The textsearch command enables command-line execution of full text searches as they are done through the
LCM full text search. The class name must be either ManagedAttribute or Bundle, since those are the only
indexed classes. This command searches for the specified string in the fullTextIndex created for the specified
class and returns a map representation of the objects in which the string is found. If a filter attribute and value
are specified, the search is further constrained to entries that correspond to that attribute name-value pair. The
filter is always treated as an equals operation. The filterName must be an attribute that is indexed in the
FullTextIndex object for the specified class.

Syntax oconfig

Examples > oconfig

Result Displays each objectConfig and its extended attributes, numbered according to the
extended attribute number that corresponds to each
ObjectConfig: Identity
 1 region
 2 Department
 3 location
 4 empId
 5 jobtitle
 Extended Identity Attributes:
 1 regionOwner
 2 locationOwner
ObjectConfig: Link
 1 inactive
 2 service
 3 privileged
 4 lastLogin
ObjectConfig: Application
 1 DeployDate
ObjectConfig: Bundle
 No attributes defined
ObjectConfig: ManagedAttribute
 1 authorization
 2 email
 3 rank
ObjectConfig: CertificationItem
 Object not found

Syntax textsearch classname string [filterName filterValue]
130 SailPoint IdentityIQ System Administration Guide

Console Commands
Seldom	Used	Commands

These commands are used by developers for testing and are rarely used in a production environment.

Properties

The properties command displays system properties.

Time

The time command reports the duration of another command.

Xtimes

The xtimes command repeats a single command as many times as specified in the first argument. This command
is used for performance testing purposes. Running a command numerous time provides a more accurate
indication of how long a process takes than running it once.

Note: This command can be combined with the time command to report timing statistics on the
performance test. By specifying this command first (for example, xtimes 20 time run
taskname), the time taken for each command run is reported. By specifying the time command
first (for example, time xtimes 20 run taskname), the total time for all of the sequential runs is
reported.

Examples > textsearch Bundle manager type business

Result Returns a map of data values for each Bundle (role) of type=business that contains the
string manager in any analyzed field. Analyzed fields in the Bundle FullTextIndex marked as
analyzed=true.

Syntax properties

Examples > properties

Result Displays Java properties of the server on which IdentityIQ is installed

Syntax time command

Examples > time run “refresh risk scores”

Result Initiates the run command and then indicates how much time it took to run. Most useful
for long-running commands

Syntax xtimes x command

Examples > xtimes 3 run “refresh risk scores”

Result Runs the refresh risk scores task three times in a row
SailPoint IdentityIQ System Administration Guide 131

Console Commands
About

The about command displays IdentityIQ's application configuration information.

Threads

The threads command displays all active threads in the instance.

LogConfig

The logConfig command reloads the log4j configuration into the instance.

Summary

The summary command lists all classes and the count of objects of each class. Changes in these counts for some
objects (for example, auditConfig) can indicate potential problems or areas of concern.

Rollback

The rollback command can undo a change to a role by restoring it from its BundleArchive object. BundleArchive
objects are created when role archiving is enabled for IdentityIQ. Role archiving tracks changes made to a role by
storing the pre-modification state in a BundleArchive object when the Bundle object is updated. This command
only applies to the BundleArchive class.

Syntax about

Examples > about

Result Lists application configuration specifics for the IdentityIQ instance (version, database, host,
memory, etc.)

Syntax threads

Examples > threads

Result Lists all active threads

Syntax logConfig

Examples > logConfig

Result Reloads the log4j configuration from the log4j2.properties file

Syntax summary

Examples > summary

Result Lists class name and count of objects for each class in the system
132 SailPoint IdentityIQ System Administration Guide

Console Commands
Rename

The rename command changes the name of an object from its existing name to the value specified by the
newname parameter.

Note: The object can be found using its old Name or its ID value, but in either case, the newname value
is used to update the Name attribute for the object.

ExportJasper

The exportJasper command creates a JasperReport XML file from a JasperTemplate object in IdentityIQ. Jasper
Report is a third party user interface for report writing. JasperReport XML is not compatible with IdentityIQ's XML
so the JasperReport XML is wrapped in a JasperTemplate object when saved in IdentityIQ. The JasperTemplate
must be exported to create a file that can be used directly with the Jasper user interface before it can be
reformatted.

Note: The import command can be used to re-import a JasperReport object into the database. The
import wraps the XML in a JasperTemplate.

Identities

The identities command lists the Name, Manager, Roles, and Links for each identity in the system. By default,
this information prints to the console (stdout) and can be difficult to read due to screen wrapping. If the output
is redirected to a file, it is printed in the file in an easy-to-read style.

Syntax rollback classname <objectname or id>

Examples > rollback BundleArchive “Contractor-IT”

Result Restores the Contractor-IT role to the pre-modification state stored in its BundleArchive
object

Syntax rename classname <objectname or ID> newname

Examples > rename application ADAM ADAM-Production

Result Changes the name of the ADAM application to ADAM-Production

Syntax exportJasper filename <JasperTemplateName or ID>

Examples > exportJasper c:\data\AggResRpt.xml AggregationResults

Result Exports the Jasper XML from the AggregationResults JasperTemplate object into the file
c:\data\AggResRpt.xml

Syntax identities
SailPoint IdentityIQ System Administration Guide 133

Console Commands
Snapshot

The snapshot command takes a snapshot of the named identity as it exists at that moment and archives it in the
database as an IdentitySnapshot object. This object provides a historical record of the state of Identity objects
at various points in time. Automatic snapshotting can be enabled and configured to create IdentitySnapshot
objects at specified intervals or based on system activities (weekly, on aggregation change, etc.). The
configuration of this feature can negatively impact system performance.

Score

The score command refreshes the identity score for the named identity and updates that score in the database.
Score updates are more commonly executed through the IdentityIQ user interface.

Tasks

The tasks command lists the Name, State, Next Execution, and Cron Strings for all currently scheduled tasks in
the system.

Examples > identities

> identities > identities.txt

Result The first example writes the Name, Manager, Roles, and Links for each identity in the
system to the console (stdout).

The second example redirects that information to the file identities.txt.

Syntax snapshot <identityname or ID>

Examples > snapshot Alan.Bradley

Result Creates an IdentitySnapshot object for the identity Alan.Bradley, capturing his Identity
Attributes, Roles (Bundles), Entitlements Outside Roles, Links, and Scorecard information
at that moment in time

Syntax score <identityname or ID>

Examples > score Alan.Bradley

Result Recalculates the risk scores for Alan.Bradley and updates his Scorecard with the new risk
scores

Syntax tasks

Examples > tasks

Result All currently scheduled tasks are written to the console (stdout)
134 SailPoint IdentityIQ System Administration Guide

Console Commands
TerminateOrphans

The terminateOrphans command sets the completion status of any open taskResult objects to Terminated.
While tasks are running, their taskResults should be in a pending state, but occasionally task results can become
orphaned and remain in this non-completed state when the task has finished (or has otherwise been
terminated). This command can be used to clean up those orphaned taskResults but it must only be executed
when there are no tasks running on the application server or the taskResults for actively running tasks are
terminated along with any orphaned results.

This command requires no arguments for execution but an artificial argument please has been added to prevent
accidentally running this command.

Certify

The certify command creates a manager or application certification. The certification is generated using the
installation's default settings/parameters. This command is primarily used for testing purposes.

Note: The command syntax help indicates that this command can generate an application owner
certification when an application is specified as a command argument, but this feature has not
been updated as the certification components of the product have changed over time. As a
result, the application argument for this command is not currently usable.

CancelCertify

Note: This command is not recommended. Use the delete command to remove certification objects.

The cancelCertify command can be used to delete a certification object from the system.

ArchiveCertification

The archiveCertification command archives the specified certification (creates a certificationArchive object) and
deletes it as an active certification.

Syntax terminateOrphans please

Examples > terminateOrphans please

Result Sets all open taskResults for the application server to the Terminated status

Syntax certify [managerName | application]

Examples > certify Catherine.Simmons

Result Generates a manager certification for manager Catherine Simmons

Syntax cancelCertify <certificationName or ID>

Examples > cancelCertify “Manager Access Review for William Moore”

Result Delete the named certification (the command fails if more than one certification object
with the same name exists)
SailPoint IdentityIQ System Administration Guide 135

Console Commands
DecompressCertification

The decompressCertification command retrieves the named certificationArchive object and prints it to the
console (stdout) in the Certification object's XML format.

WorkItem

The workItem command displays certain details (Owner, Create Date, Expiration Date) for the specified
workItem.

Note: This command requires the workItem ID or name value as an input parameter. The workItem
ID value (a long hexadecimal number) is obtained using the IdentityIQ console's list workItem
command. The workItem Name is not the descriptive name for the workitem, it is a numeric
value assigned when the workItem is created. The value is found in the XML representation of
each workItem through the Debug pages.

Approve

The approve command sets the specified workItem to a Finished state (indicating it was approved), adds any
specified completion comments to the workItem, and submits the workItem to the workflower to move it to the
next appropriate stage.

Note: This command requires the workItem ID or name value as an input parameter. You can obtain
the workItem ID value (a long hexadecimal number) using the IdentityIQ console list workItem
command. The workItem Name is not the descriptive name for the workitem, it is a numeric
value assigned when the workItem is created. The value is found in the XML representation of
each workItem through the Debug pages.

Syntax archiveCertification <certificationName or ID>

Examples > archiveCertification “Manager Access Review for William Moore”

Result Creates a certificationArchive object and delete the certification from the system

Syntax decompressCertification <certificationArchiveName or ID>

Examples > decompressCertification “Manager Access Review for William Moore”

Result Prints the named certification archive to the console (stdout) in certification XML format

Syntax workItem <workItemID or Name>

Examples > workItem 40288f0132b155ad0132b58a4e3f018e

Result Displays the Owner, Created Date, and Expiration Date for the specified workItem

Syntax approve <workItemID or Name> [comments]
136 SailPoint IdentityIQ System Administration Guide

Console Commands
Reject

The reject command sets the specified workItem to a Rejected state, adds any specified completion comments
to the workItem, and submits the workItem to the workflower to move it to the next appropriate stage.

Note: This command requires the workItem ID or name value as an input parameter. The workItem
ID value (a long hexadecimal number) is obtained using the IdentityIQ console's list workItem
command. The workItem Name is not the descriptive name for the workitem, it is a numeric
value assigned when the workItem is created. The value is found in the XML representation of
each workItem through the Debug pages.

Warp

The warp command parses an XML file to create an object and then displays the object's XML representation in
the console (stdout). If it is not in valid form or its tags do not match the IdentityIQ DTD, a runtimeException is
printed to the console describing the error.

Notify

The notify command sends an email message to the specified identity using the email template specified. This
command does not accept any other parameters that can be passed to the template, so it can only be used for
templates whose messages do not rely on variable substitutions to build the content. This command is most
often used for testing purposes.

Note: The toAddress argument can contain an identity name or ID or an email address. If it contains
an identity name or ID, the email address is retrieved from the identity record.

Examples > approve 40288f0132b155ad0132b58a4e3f018e “Access approved”

Result Marks the specified workItem as approved, adds the comment “Access approved” to the
workItem's completion comments, and submits the workItem for evaluation of the next
appropriate step (another approval, provisioning, etc.)

Syntax reject <workItemID or name> [comments]

Examples > reject 40288f0132b155ad0132b58a4e3f018e “Access conflicts with AP
data entry entitlement”

Result Marks the specified workItem as rejected, adds the comment “Access conflicts with AP
data entry entitlement” to the workItem's completion comments, and submits the
workItem for evaluation of the next appropriate step (another approval, etc.)

Syntax warp filename

Examples > warp c:\data\newWorkflow.xml

Result Parses the XML in the file c:\data\newWorkflow.xml and displays the XML
representation of the object in the console, or reports any errors to the console

Syntax notify <emailTemplateName or ID> toAddress
SailPoint IdentityIQ System Administration Guide 137

Console Commands
Authenticate

The authenticate command authenticates a username and password against the pass-through authentication
source or the internal IdentityIQ records. No results are returned if the values are authenticated. If the password
is incorrect or the user name cannot be found, an error message is displayed in the console (stdout).

SimulateHistory

The simulateHistory command is used to generate a fake, randomly-generated group index or identity score
history for one or more groups or identities. Used for generating test data in a development environment.

Search

The search command looks up an object based on specified criteria, similar to a simplified SQL/HQL interface. A
single class name is specified with a list of the attributes to display from that class. Following the where keyword,
search filters can be specified in name value sets. All filter values are used in a like comparison. The record is
returned if the record's field value contains the specified value string.

Examples > notify Certification Alan.Bradley

Result Sends an email to Alan.Bradley's email address using the Certification email template

Syntax authenticate username password

Examples > authenticate Alan.Bradley s53n659#@5a!

Result Authenticates username Alan.Bradley and the provided password against the
authentication source (pass-through or internal)

Syntax simulateHistory Identity|Group <groupName or ID>|<identityName or
ID>|all

Examples > simulateHistory Identity all

> simulateHistory Group Finance

Result First example generates fake risk scorecards for all identities in the system

Second example generates fake groupIndex information for the Finance group

Syntax search className [attributeName…] where [filter…]

filter: attributeName value

Examples > search identity name manager.name region where name kat

Result Returns the name, manager's name, and region for all identities whose name contains the
string kat.

For example, records for Katherine.Jones, John.Kato, and Tammy.Erkatz are returned by
this search
138 SailPoint IdentityIQ System Administration Guide

Console Commands
CertificationPhase

The certificationPhase command transitions the specified certification to the specified phase. This command
fails if the certification is on or past the requested phase.

Note: The certification is advanced to the next enabled phase after the requested phase if the
specified phase is not enabled for the certification. For example, if a certification has neither a
Challenge nor a Remediation phase enabled but the command requests that it be advanced to
the Challenge phase, the certification is advanced to the End phase.

Note: The certification is sequentially advanced through all enabled phases until it reaches or passes
the requested phase. Any business logic that should occur during each phase transition (period
enter rules, period end rules, etc.) is executed during the phase advancement.

Impact

The impact command reads an XML file containing a Bundle (role) object and performs role impact analysis for
the role. The command parses the XML to its object form. Impact analysis is not performed if that object is not
a Bundle.

Event

The event command schedules a workflow to run, passing in an Identity name as an argument. By default, the
workflow is scheduled 1 second after the command is issued, but a delay can be specified in seconds as a
command argument.

Syntax certificationPhase <certificationName or ID> [Challenge |
Remediation | End]

Examples > certificationPhase “Catherine Simmons Access Review” Challenge

Result Advances the “Catherine Simmons Access Review” certification from its current phase
(Active) to the Challenge phase. If this review is not configured for a Challenge phase, it is
transitioned to the Remediation or End phase (depending on configuration).

Syntax impact filename

Examples > impact c:\data\ContractorRole.xml

Result Performs role impact analysis for the Bundle object represented by the XML in
c:\data\ContractorRole.xml

Syntax event <identityName or ID> <workflowName or ID> [seconds]

Examples > event Catherine.Simmons “Identity Refresh” 60

Result Schedules an Identity Refresh workflow to run for Catherine.Simmons 60 seconds after the
command is issued
SailPoint IdentityIQ System Administration Guide 139

Console Commands
ConnectorDebug

The connectorDebug command is used to test a connector or troubleshoot application aggregation issues. Its
method parameters determine what is tested and how.

The specific syntax for each of the “methods” is shown below.

Syntax connectorDebug <applicationName or ID> <method> [methodArgs…]

Method test

Purpose Test whether a connection can be established with the application through its
connector

Syntax connectorDebug <applicationName or ID> test

Example > connectorDebug ADAM test

Result Returns “Test Succeeded” on success, reports an error in the console on failure.

Method iterate

Purpose Iterate through the application's account or group records

Syntax connectorDebug <applicationName or ID> iterate [account|group
(default = account)] [-q (for "quiet mode")]

Example > connectorDebug ADAM iterate -q
> connectorDebug ADAM iterate account

Result First example iterates all account records natively in the ADAM application and returns
only the count of iterated objects and how many milliseconds it took to run.

Second example iterates account records natively in the ADAM application and
returns a ResourceObject representation of each account to the console.

Method get

Purpose Test whether a connection can be established with the application through its
connector

Syntax connectorDebug <applicationName or ID> get account|group
nativeIdentity

Example > connectorDebug ADAM get account
“CN=Willie.Gomez,DC=sailpoint,DC=com”

Result Returns the XML representation of the ResourceObject for that nativeIdentity on the
application

Method auth
140 SailPoint IdentityIQ System Administration Guide

Console Commands
Encrypt

The encrypt command is used to encrypt a string. This command is generally only useful for test purposes. It can
generate an encrypted password which can be passed in other console commands, for example, the
authenticate command.

HQL

The hql command executes a search based on a Hibernate Query Language statement. The command syntax
matches the sql command's syntax, but this command can select but not update data.

Date

The date command shows the current date and time for the application server or the date and time value for a
specified utime (universal time) value.

Purpose Test pass-through authentication against the specified application (The featuresString
in its application definition must contain AUTHENTICATION.)

Syntax connectorDebug <applicationName or ID> auth username password

Example > connectorDebug ADAM auth administrator Pa$$w0rd

Result Returns “Authentication Successful” when user is authenticated or displays the
exception message to the console if authentication fails

Syntax encrypt string

Examples > encrypt MyPa$$w0rd

Result Returns the encrypted equivalent for the specified string

Syntax hql hqlStatement | -f inputFileName

Examples > hql “select name, manager.name from Identity” >
c:\data\Identities.dat

> hql -f c:\hql\SelectIdentities.hql

Result The first example executes the specified HQL select statement and writes the results to the
file c:\data\Identities.dat.

The second example reads the HQL from the file c:\hql\SelectIdentities.hql,
prints the HQL to the console (stdout), and displays the query results to the console
(stdout).

Syntax date [utime]

Examples > date

> date 1338820492484
SailPoint IdentityIQ System Administration Guide 141

Console Commands
Shell

The shell command escapes out to the command line and runs the command specified. (This command does not
work properly in a Windows environment but does work in UNIX.

Meter

The meter command toggles metering on or off. While metering is on, the console reports some timing statistics
for each command executed. Meter information is displayed after the results of each command as it is executed.

Compress

The compress command is designed to compress the contents of a file to a string that can be included within an
XML element. It compresses the file and then encodes it to Base64 and writes that text to the specified output
file. This resultant file can then be used in an XML element stored in the database. This has limited usefulness
within IdentityIQ since no part of the application is designed to read these compressed strings, but custom rules
can be used to process them as needed or they can simply be stored in the database to be retrieved and
uncompressed for use by an external application at a later time.

Result The first example displays the command syntax and the current date/time and current
UTIME value.

The second example returns the date/time value for the specified UTIME value.

Syntax shell commandLine

Examples > shell ls

Result Lists the contents of the UNIX file system directory from which the console was run

Syntax meter

Examples > meter

Result Toggles metering on and off. When turned on, all subsequently issued commands report
timing statistics.

Meter information displayed includes: number of calls, total number of milliseconds,
maximum time for one call, minimum time for one call, and average time per call.

Syntax compress inputFilename outputFilename

Examples > compress file1.txt file2.txt

Result Compresses the contents of file1.txt, encodes that into Base64, and writes the
resultant text string to file2.txt
142 SailPoint IdentityIQ System Administration Guide

Console Commands
Uncompress

The uncompress command functions in exactly the opposite way of the compress command, taking a
compressed, Base64-encoded file and returning its uncompressed format.

ClearEmailQueue

The clearEmailQueue command deletes all queued but unsent email messages from the IdentityIQ email queue.
This includes any new messages that have not yet been sent and messages that have encountered problems that
prevented successful delivery.

ClearCache

The clearCache command removes objects from the Hibernate object cache. This can be used when debugging
Hibernate issues.

Syntax uncompress inputFilename outputFilename

Examples > compress file2.txt file3.txt

Result Reverses the compressing process to return the original, uncompressed version of the text,
writing that to the file file3.txt

Syntax clearEmailQueue

Examples > clearEmailQueue

Result Deletes all unsent emails from the email queue

Syntax clearCache

Examples > clearCache

Result Clears the Hibernate object cache
SailPoint IdentityIQ System Administration Guide 143

Console Commands
Service

The service command provides information about the background services running in the console. The services
include:

• Cache - periodically refreshes cached objects

• SMListener - listens for change events from PE2 change interceptors

• ResourceEvent - looks for change events added to a queue and processes them

• Heartbeat - maintains a Server object for each IdentityIQ instance and periodically updates it so you can
tell if an instance is still running

• Task - the Quartz task scheduler

• Request - the IdentityIQ request processor - stopping the Request service also stops partitioned tasks

Syntax service list | start | stop | run

Examples > service list

Result Lists background services running in the console
144 SailPoint IdentityIQ System Administration Guide

Where Classification Data Comes From
Chapter	9:	Classifications
Classifications let you flag and categorize roles and entitlements, to help ensure the security and integrity of your
access governance practices. Classifications can alert you when requesting, granting, or approving a user’s access
will give that user access to sensitive, protected, or otherwise significant data.

In IdentityIQ, classifications are typically used to flag access to sensitive data, such as financial, personal, or
health-related information, but you can use classifications to identify any kind of access your business needs to
pay special attention to.

Classifications can be used in certifications and policies, to help you monitor and control the access your users
have to sensitive data. You can configure access requests, approvals, and access reviews to show a classification
icon with any role or entitlement that grants access to sensitive data, so that the users responsible for making
access decisions can quickly and easily see which entitlements allow potentially risky access.

This chapter includes the following sections:

• “Where Classification Data Comes From” on page 145

• “Working With Classification Data in IdentityIQ” on page 146

• “Integrating with File Access Manager for Classifications” on page 149

Where	Classification	Data	Comes	From

IdentityIQ’s classification functions are designed to integrate with SailPoint’s File Access Manager module, to
provide robust and seamless governance of sensitive data.

You can also implement classifications using data from sources other than File Access Manager, to tailor your
classifications solution to your particular business needs.

File	Access	Manager	Classifications

In File Access Manager, classification categories are assigned to Business Resources (folders). Classifications
typically flag sensitive data, but can flag anything you configure File Access Manager to monitor. In many cases,
access to classified data is granted through account groups - most typically, Active Directory Groups - so that
users' membership in those groups indirectly grants access to that data. For example, a company’s Human
Resources group might have access to employees’ personal data, or a hospital’s group of doctors might have
access to medical records. When you include File Access Manager's classification data in your IdentityIQ
installation, you can see the implications of users' existing (and requested) group memberships, to better inform
your access governance decisions in IdentityIQ

For more information about how data is classified in File Access Manager, refer to the IdentityIQ File Access
Manager Administrator Guide.

Classifications	from	Other	Sources

You can bring classification data into IdentityIQ from sources other than File Access Manager, or define your
classification data independently in IdentityIQ, by importing the classification data as an XML object, using the
iiq console or the gear menu > Global Settings > Import From File feature.
SailPoint IdentityIQ System Administration Guide 145

Working With Classification Data in IdentityIQ
Here is an example of what a classification object might look like. This example includes a name, display name,
source of origin for the data, and localized descriptions for the classification.

<?xml version='1.0' encoding='UTF-8'?>

<!DOCTYPE Classification PUBLIC "sailpoint.dtd" "sailpoint.dtd">

<Classification id="" name="PHI" displayName="Protected Health Information"
origin="MyIndependentDataSource">

 <Attributes>

 <Map>

 <entry key="sysDescriptions">

 <value>

 <Map>

 <entry key="en_US" value="Allows access to Protected Health Information"/>

 <entry key="fr_FR" value="Permet l’accès aux informations de santé
protégées"/>

 </Map>

 </value>

 </entry>

 </Map>

 </Attributes>

</Classification>

Working	With	Classification	Data	in	IdentityIQ

Classifications in IdentityIQ are managed as attributes on entitlements - if you are integrating with File Access
Manager, these entitlements will most typically be group entitlements. For example, a Human Resources group
is aggregated into IdentityIQ as a group entitlement; if this group is categorized in File Access Manager (or some
other source) as having access to sensitive information, an attribute that flags the Human Resources group
entitlement as having this access is added to the group entitlement. Once you have defined classifications in
IdentityIQ, you can apply classification attributes to any entitlement, not just group entitlements.

Entitlements are managed in IdentityIQ, using IdentityIQ’s range of compliance and lifecycle management
features, such as access requests, certifications and access reviews, policies, and reporting.

You can view and manage classifications in these areas of IdentityIQ:

Lifecycle	Manager:	Access	Requests	and	Approvals	

A global setting in Lifecycle Manager determines whether classification data is shown with the access items (such
as roles or entitlements) that you can request for users in the Manage Access feature. This global setting is
provided so that you can choose whether or not to alert requesters to the fact that certain roles or entitlements
may allow access to sensitive or protected data.

To enable the display of classifications in Access Requests:

1. Click the gear menu > Lifecycle Manager.
146 SailPoint IdentityIQ System Administration Guide

Working With Classification Data in IdentityIQ
2. On the Configure tab, scroll to the Manage Classifications Options section.

3. Check the Display classifications in Access Request box.

4. Save your change.

If this setting is enabled in Lifecycle Manager, roles and entitlements are flagged with relevant classification
information in the Access Requests pages. You can click the Details button for flagged roles and entitlements,
to see more information about the classifications.

Classification data also appears in the Approvals page for access requests. Classification flags always appear in
the Approvals page, regardless of the setting in the Lifecycle Manager’s Manage Classifications Options section,
since reviewers will always need to know when granting access will allow access to sensitive or protected data.

Adding	Classifications	to	Roles	and	Entitlements	

For File Access Manager integrations, classifications can be added to entitlements by running a task. This process
is described in more detail in "File Access Manager Classification Processes" on page 150.

For classifications that come from a source other than File Access Manager, classifications can be added manually
to roles and entitlements.

To add classifications to a role:

1. Click Setup > Roles.

2. To add classifications to existing roles, find the role you want to edit in the Role Viewer, then click Edit
Role; for new roles, click New Role > Role.

3. In the Role Editor, select the classifications you want to add from the drop-down list.

4. Save your changes.

You can also include classifications as criteria in “Match List” Assignment Rules for the role. Assignment Rules
are used to automatically assign roles to identities during a correlation process.

In the Role Search tab you can include classifications as search criteria.

To add classifications to an entitlement:

1. Click Applications > Entitlement Catalog.

2. To add classifications to existing entitlements, use the Filter field or Advanced Search to find the
entitlement you want to edit; for new entitlements, click Add New Entitlement.

3. On the Classifications tab, select the classifications you want to assign from the drop-down list, then click
Add to assign the classification.

4. Save your changes.

In the Advanced Search feature of the Entitlement Catalog, you can include classifications as search criteria.

Classifications	in	Certifications	and	Access	Reviews

When scheduling a certification campaign, you can opt to show classification data the campaign’s access reviews.
Classifications can be shown in Manager, Application Owner, Advanced, Role Membership, and Targeted
certifications. You can also use classifications as a criterion for what to certify, in Targeted certifications.

You can set a global default to show classifications for all your certification campaigns, and modify the default
setting in any individual certifications you schedule.
SailPoint IdentityIQ System Administration Guide 147

Working With Classification Data in IdentityIQ
To set the global default for showing classifications in your certification campaigns:

1. Click the gear menu > Compliance Manager.

2. In the Behavior section, use the Show Classifications checkbox to enable or disable showing classifications
by default.

CAUTION—When Show Classifications is enabled here, any Separation of Duties (SOD) Policy Violations can
include information about classifications in the Revoke > Correct Violations dialog. If you disable Show
Classifications here, classification details will not appear in that dialog.

3. Save your changes.

To modify the default behavior in an individual certification, check or uncheck the Show Classifications checkbox
in the Schedule Certification page.

• In Manager, Entitlement Owner, Advanced, and Role Member certifications, this option is on the
Behavior tab.

• In Targeted certifications, this option is in the Additional Settings section, under Advanced Options.

To include classifications as a criteria for what to certify in a Targeted certification:

1. In the What to Certify section, click Filter Roles or Filter Entitlements.

2. Select Classifications as an attribute.

3. Choose an operator (Equals or Not Equals) and select your classifications from the drop-down.

Classifications	in	Policies	and	Policy	Violations

 In Advanced policies, you can use classifications as criteria for your policy rules.

To add classifications to an Advanced policy rule:

1. Click Setup > Policies.

2. To add classifications to an existing policy, use the Filter field or Advanced Search to find the policy you
want to edit; for new policies, click New Policy > Advanced Policy.

3. Click Create New Rule, or double-click an existing rule you want to edit. Classifications can be used as rule
criteria in Match List, Rule, Script and Filter rules.

Note: Rules and scripts are written in BeanShell, and Filters are an XML specification.

4. For Match List rules:
a. Under Selection Method, choose Match List.
b. Click Add Role Attribute or Add Entitlement Attribute.
c. In the Name field choose Classification.
d. Choose an operator: Equals, Not Equals, or Is Null.
e. In Value, type the name of the classification to use. (To find the name of a classification, you can

use the Debug pages to open the classification object and find the name value.)

5. When you have added all the classification criteria you want to use, you can run a simulation of the rule, or
click Done to save your changes and exit.

Classifications	in	Advanced	Analytics

In the Advanced Analytics page, you can search for roles and entitlements using classifications as search criteria.

1. Click Intelligence > Advanced Analytics.
148 SailPoint IdentityIQ System Administration Guide

Integrating with File Access Manager for Classifications
2. Choose Role or Entitlement as the Search Type.

3. Choose a classification to search on, from the drop-down.

4. If you want to see classification details in your search results, select Classifications in the Fields to Display
panel.

5. Click Run Search.

Classifications	in	the	Identity	Warehouse	

To see a user’s classifications in the Identity Warehouse:

1. Click Identities > Identity Warehouse.

2. Select an identity.

3. Click the Entitlements tab. Any entitlement or role with a classification assigned to it is flagged with the
classifications icon.

Classifications	in	the	Edit/View	Identity	Page

The Manage Identity feature shows classifications for entitlements on identities.

1. In the Quicklinks menu, click Manage Identity

2. Choose Edit Identity or View identity.

3. Click on the identity; the Access panel for the identity shows a classification icon for any entitlements with
classifications assigned. Click the classification icon for more details.

Integrating	with	File	Access	Manager	for	Classifications

For integration with File Access Manager’s classification feature, the initial installation and configuration involves
two steps:

1. Import the init-fam.xml file into IdentityIQ, using the iiq console or the gear menu > Global Settings >
Import From File page.

2. Click the gear menu > Global Settings > File Access Manager Configuration.

Table 45—File Access Manager Configuration Settings

Field Name Description

File Access
Manager
Hostname

The hostname of the File Access Manager web client server. For example,
https://webclient.mydomain.com

Basic Select this option for basic authentication to the File Access Manager web client,
using a username and password.

OAuth Select this option for OAuth authentication to the File Access Manager web client,
using a Client ID and Client Secret.

Username For Basic authentication: the username for logging in to the File Access Manager web
client.
SailPoint IdentityIQ System Administration Guide 149

Integrating with File Access Manager for Classifications
If you are implementing classifications that come from a source other than File Access Manager, you do not need
to take any special steps to configure the feature. You can import your classification objects directly into
IdentityIQ and manage classifications as described in the sections above.

File	Access	Manager	Classification	Processes

Bringing classification data from File Access Manager into IdentityIQ, and including classifications in your lifecycle
and data governance practices, is a multi-step process. An overview of these processes is provided here.

This section assumes you have already completed the configuration in File Access Manager to classify resources
and identify which groups have access to those resources. It also assumes that you have applications configured
in IdentityIQ for aggregating group and account data.

When you work with classifications that originate in File Access Manager, the assumption is that both the
IdentityIQ instance and the File Access Manager instance use the same group data. If this is not the case, you may
need to configure rule-based logic to correlate your File Access Manager accounts and groups with your
IdentityIQ accounts and groups. You can specify a custom correlation rule for this aggregation in Global Settings
> File Access Manager Configuration, in the SCIM Correlation Rule field.

At a high level, these are the steps for aggregating and managing classifications from File Access Manager.

Application	Configuration

1. Configure the IdentityIQ application(s) that aggregate group data. As part of this configuration, you must
specify a correlation key in each application’s group schema, to correlate groups in IdentityIQ to groups in
File Access Manager.

For Active Directory applications, the group schema attribute to set as the correlation key is
MsDs-PrincipalName.

2. In the File Access Manager Configuration (under the gear menu > Global Settings), add each of the
applications that aggregate group data to the SCIM Correlation Application field.

Password For Basic authentication: the password for logging in to the File Access Manager web
client.

Client ID For OAuth authentication: the Client ID for logging in to the File Access Manager web
client. This value is stored in the web client in Settings > General > API Authorization.

Client Secret For OAuth authentication: the Client Secret for logging in to the File Access Manager
web client. This value can be copied from the web client in Settings > General > API
Authorization.

SCIM Correlation
Rule

If the correlation logic in your configured applications does not meet your needs for
correlating File Access Manager groups and accounts against IdentityIQ groups, you
can use a custom rule to manage correlation. The rule must have a rule type of
Correlation in order to appear in this drop-down.

SCIM Correlation
Applications

Select the applications to correlate File Access Manager groups and accounts against.
Typically these will be Active Directory applications.

Table 45—File Access Manager Configuration Settings (Continued)

Field Name Description
150 SailPoint IdentityIQ System Administration Guide

Integrating with File Access Manager for Classifications
Run	Tasks	to	Aggregate	and	Process	Classification	Data

IdentityIQ uses tasks to aggregate accounts, groups, and File Access Manager classification data. If you do not
already have tasks set up to aggregate accounts and groups, you will need to set these tasks up as part of
implementing this feature. You must also create and configure a File Access Manager Classification task. For
more detail about setting up tasks see "Tasks" on page 65.

These tasks should be run on a recurring basis, to keep your classification data in IdentityIQ current.

1. Run a task to aggregate groups. Typically these will be Active Directory groups.

2. Run a File Access Manager Classification task. This is a new task type that was introduced in IdentityIQ
version 8.1 as part of the classifications feature. Full details about configuring the options for this task is in
"Tasks" on page 65.

3. Optional: Run an Effective Access Indexing task. You only need to run this task if you are tracking
classification data for effective access items. These options are important for managing classifications:

- Index classifications: use this option to add an entitlement’s classifications to the target association
that is created when the entitlement target is indexed; in the UI, this means that an entitlement’s
classifications will be displayed whenever that entitlement occurs as Effective Access.

- Promote classifications: use this option to promote classifications up the effective access "chain" to
the entitlement that grants the effective access. For example, if EntitlementA grants you effective
access to EntitlementB, and EntitlementB has a classification assigned to it, then with the Promote
Classifications option enabled, the classification assigned to EntitlementB will also be displayed in
the UI for EntitlementA.

SailPoint IdentityIQ System Administration Guide 151

Integrating with File Access Manager for Classifications
152 SailPoint IdentityIQ System Administration Guide

Manage Task Results
Chapter	10:	Using	the	Administrator	
Console

Use the Administrator Console link, under the gear icon, to access the Administrator Console and view the Task,
Provisioning, and Environment monitoring tables.

• “Manage Task Results” on page 153

• “Manage Provisioning Transaction Results” on page 154

• “Monitoring Your Environment” on page 155

Access to the Administrator Console is controlled with IdentityIQ rights.

Manage	Task	Results

Use the Tasks table to view host affinity check run time data. From this page you can also postpone a scheduled
task, terminate a running task, or dump a stack trace of a running task. The stack trace is typically used when the
task is running long and to diagnostics is desired.

Use the tabs at the top of the table to limit your view by task status: Active, Scheduled, or Completed. Use the
Filter options or search field to further limit the tasks displayed.

Active	Tab

This tab displays all of the tasks that are currently running.

Use the Actions column to terminate a running task or request a stack trace, if a task is running long and you
would like to see diagnostics.

Scheduled	Tab

This tab displays all of the tasks that are scheduled to run in the future, including those that are scheduled to run
periodically, for example Perform Maintenance.

Table 46—Manage Tasks - Active Tasks Tab

Column Description

Name Name of the task

Type Task type

Start Date Name of the task

Owner The task owner, not necessarily the identity who requested the task be run

Host Host on which the task is currently running

Current Runtime How long the task has been actively running

Average Runtime The time that this task has historically taken to complete
SailPoint IdentityIQ System Administration Guide 153

Manage Provisioning Transaction Results
Use the Actions column to postpone a scheduled task or delete a schedule. No instance of a postponed task will
be performed until after the selected date.

Complete	Tab

This tab displays all of the tasks that have completed, regardless of the result.

Manage	Provisioning	Transaction	Results

Note: This feature can be disabled and might not appear in your instance of IdentityIQ. Contact your
system administrator for details.

Table 47—Manage Tasks - Scheduled Tasks Tab

Column Description

Name Name of the task

Type Task type

Task Name of the task

Host Host on which the task is scheduled to run

Next Execution The next time this task is scheduled to run

Last Execution The last time this task was executed

Last Result The result of the last run, for example Success or Failed

Owner The task owner, not necessarily the identity who requested the task be run

Table 48—Manage Tasks - Completed Tasks Tab

Column Description

Name Name of the task

Type Task type

Result The result of the last test run

Start Date The date and time at which this task began

Date Complete The date and time at which this task stop running

Owner The task owner, not necessarily the identity who requested the task be run

Host Host on which the task was run

Average Runtime The time that this task has historically taken to complete

Runtime The actual runtime

Diff from Average The difference between the actual and average runtimes
154 SailPoint IdentityIQ System Administration Guide

Monitoring Your Environment
Use the Provisioning Transactions table to view the status of all provisioning transactions in your implementation
of IdentityIQ; connectors, manual work items, and IdentityIQ operations.

Use the tabs at the top of the table to limit your view by transaction status: All, Failure, Success, or Pending. Use
the Filter options or search field to further limit the transactions displayed. The logging level is controlled by a
system setting. If you are not seeing all of your transactions, contact your system administrator.

Use the report/download button to launch a Provisioning Transaction Object report in the background. From the
Report Launched window, use Get Email Notification to receive an email when the report is complete, or View
Report to display the Report Results page.

Click the information icon for any transaction to view detailed information. The Transaction Details window
provides very detailed information, including the reasons for a Failed or Pending status. After viewing take the
appropriate actions to correct the reasons for the failure or delay, you can use the Override or Retry options to
proceed with the provisioning process.

Use Override to manually create a work item to take action on failed transactions.

Use Retry to manually retry the provisioning transaction. The retry option is only available on transactions that
are in the Pending state, and only for transactions that were created with the retry options enabled. This button
overrides the reset counter configured in the transaction.

Failed transaction cannot be retried, you must use the override option to create a new work item for those
transactions.

The information contained on this page is also available in two reports, the Provisioning Transaction Object
Report and the Detailed Provisioning Object Report.

 Manage the information displayed on this page from the Miscellaneous tab of the Configure IdentityIQ Settings
page of Global Setting, found under the gear icon.

Monitoring	Your	Environment

The Environment Monitoring page provides insight into each defined Application's health and the status of your
Modules and Extensions. This helps diagnose issues with connectivity within the environment.

The Application view provides a view from an Application up perspective. Each Application is listed, along with
a summary of all statuses reported by all configured Hosts.

Click Columns to select and arrange the information displayed on the pages. Use the search field to locate
specific information.

Use the gear icon in the title bar to define global settings for all hosts in IdentityIQ. These settings are used for
all hosts that have not explicitly over-ridden the defaults.

Hosts

This tab displays all of the hosts associated with an IdentityIQ instance.

Click on a name in the Host Name column to show all ServerStatistics captured for the selected host, grouped
by Snapshots. The snapshots can be cycled using the previous/next arrows, or selected by name using the
drop-down list.

Use the action buttons in the Host Action column to configure or delete hosts. The Host Setting dialog enables
you to specify the services running on each host and configure host monitoring.
SailPoint IdentityIQ System Administration Guide 155

Monitoring Your Environment
Deleting a host will remove all associated server statistics, as well as the Server object. The host will no longer
appear in the list of hosts after deletion. However, if the underlying server is still running, the host will reappear
the nest time its heartbeat service runs. All configuration settings for a re-generated host will use defaults for the
its list of services, and for the monitoring service configuration.

Services

This enables a specific host to enable/disable services. The one exception is the Request Service. The Request
Service cannot be fully shut down. The Host, if service shutdown, still processes requests that have been
specifically targeted to that host, but will not pick up generic requests (un-targeted requests).

Configuration

Note: The Application Monitoring does not adhere to the restore defaults.

The Configuration tab enables host specific monitoring configuration. This enables you to override the global
defaults for Polling Interval and Statistics Retention, and to enable and disable given retained statistics.

Click Use Default Settings to clear all host specific overrides revert back to the global defaults.

The Configuration tab also allows selecting Applications in which to monitor health. When selected, the
Application is contacted each time the monitoring service runs, and the health check status is recorded.

Applications

Note: An application must be monitored by at least one host before it will report statistics.

The Application tab provides a view from an application up perspective. Each application is listed, along with a
summary of all statuses reported by all configured hosts. Monitoring can be run from any number of servers, on
any subset of applications.

Click an application name to display a panel containing more detailed information about a the application's
statuses. This shows each host that has reported a status for the application, as well as the status, and time of
ping.

If you have full access rights, click the refresh icon to schedule a request on the host to perform a health check
for the application. The refresh icon is disabled until the request is fulfilled.

SailPoint	Modules	and	Extensions	

The SailPointModules and Extensions tab provides a list of all installed modules and extensions and a summary

of all statuses reported. Click a module or extension name to see a list of reported statuses.
156 SailPoint IdentityIQ System Administration Guide

Managing Business Processes
This section contains the following information:

• “Business Process Management” on page 159

• “Workflow Basics” on page 161

• “Using the Business Process Editor with Workflows” on page 167

• “Editing Workflow XML” on page 183

• “Advanced Workflow Topics” on page 221
SailPoint IdentityIQ System Administration Guide 157

158 SailPoint IdentityIQ System Administration Guide

Chapter	11:	Business	Process	
Management

A Business Process is a sequence of operations or steps that are launched to perform work. IdentityIQ Business
Processes include standard “out-of-the-box” processes and custom “installation-specific” processes. System
events trigger both standard and custom IdentityIQ Business Processes. The informal term, workflow, is used in
this section to refer to a business process.

The following events can trigger a workflow:

• Role creation or modification

• Account Group creation or modification

• Identity update

• Identity refresh

• Identity correlation

• Deferred role assignment, de-assignment

• Deferred role activation, deactivation

• Any Lifecycle Manager event

• Any Lifecycle Event (marked by changes to an Identity's attributes)

Custom workflows can be defined to do a wide variety of processing tasks. You can use:

• IdentityIQ workflow library methods and rules.

• Custom BeanShell scripts and rules.

Customizing or creating workflows generally involves a combination of XML and Java/BeanShell programming.
You can manage some customization activities with the IdentityIQ graphical process editor that is included in the
product. To customize or create new workflows, typically you need to be comfortable writing XML and Java.

This section has the following topics:

• "Workflow Basics" on page 161

• "Using the Business Process Editor with Workflows" on page 167

• "Editing Workflow XML" on page 183

• "Advanced Workflow Topics" on page 221
SailPoint IdentityIQ System Administration Guide 159

160 SailPoint IdentityIQ System Administration Guide

Terminology
Chapter	12:	Workflow	Basics
This section contains some key concepts for developing and using workflows.

Terminology

The terms, Business Process and Workflow, are used synonymously In IdentityIQ and throughout this document.
The IdentityIQ user interface refers to these sets of connected actions as Business Processes, which is the term
that business managers often use.

Important	Workflow	Objects

The IdentityIQ Object Model uses four key objects in workflows. To work with workflows, you need a basic
understanding of these objects.

Note: The most important object for writing workflows is the WorkflowContext object, which tracks
the launchtime state of the workflow and performs other critical functions. Because
WorkflowContext methods are used in workflows, data can be extracted from it as needed
within any step of the workflow.

Workflows	Operation

Workflows carry out a sequence of defined actions based on a triggering event and can be used for a variety of
activities within the system. In its launching state, a workflow is tracked through a workflow case, which manages
only one target entity at a time (one identity, one role, one provisioning plan, etc.).

Table 49—Important Workflow Objects

Object Usage

Workflow Defines the workflow structure and steps involved in the workflow processing.

WorkflowCase Represents a workflow in progress.
Contains a workflow element in which the process is outlined and current state data
is tracked.
Contains identifying information about the workflow target object.

WorkflowContext Tracks launchtime information the Workflower maintains as it advances through a
workflow case.
Passed into rules and scripts and to the registered WorkflowHandler.
Contains all workflow variables, step arguments, current step or approval, workflow
definition, libraries, and WorkflowCase.

TaskResult Records the completion status of a task, or in this case, the workflow.
Contained within the WorkflowCase.
SailPoint IdentityIQ System Administration Guide 161

Triggering Workflows
Note: If multiple identities are modified at one time in a way that requires a workflow to launch for
all of the identities, a separate workflow case is created to track the processing of the workflow
for each single identity.

Provisioning	Plans	in	Workflows

A provisioning plan contains a list of requested changes to an identity. Most workflows that change identities
contain a single provisioning plan in a workflow variable. When performing Workflow customization you
commonly need to inspect and sometimes need to modify the provisioning plan.

Note: Only one provisioning plan can be referenced in a workflow case at a time.

When you request changes for more than one identity at a time, even if the same change is requested for all the
identities:

• A separate provisioning plan is created for each identity.

• A separate workflow case is created to manage the provisioning plan created for each identity.

Triggering	Workflows

Events that occur in other parts of IdentityIQ and changes to attributes can trigger Workflows. Common
Workflow triggers include the following items:

• Lifecycle Manager Actions — Requests to change an identity's roles, entitlements, or accounts can
activate workflows.

• Lifecycle Events — Creating an identity, deactivating an identity, or moving an identity from one
manager to another manager can activate workflows.

• Non-Lifecycle Events — Editing a role, editing an account group, and changing a password can active
workflows.

• Identity Attribute Change — Value changes can activate workflows.

• Policy Violations — A policy violation can activate workflows.

The following table lists the four main areas of IdentityIQ where you can associate Workflows to system activities.

Table 50— IdentityIQ Setup for Workflows

Workflow Trigger IdentityIQ Setup

Lifecycle Manager Requests Select Lifecycle Manager from the gear icon menu and go to the
Business Processes tab.

Lifecycle Events Select Lifecycle Events from the Setup menu and specify the business
process behavior.

Non-LCM-related Events Linked to triggering events.
Select Global Settings from the gear icon menu and go to the
IdentityIQ Configuration page. Select the Identities, Roles, or
Miscellaneous tab and then select a business process.
162 SailPoint IdentityIQ System Administration Guide

IdentityIQ Default Workflows
Note: You can also configure an IdentityIQ task to trigger a workflow. This workflow set up is a more
complex process. See “Advanced Workflow Topics” on page 221.

IdentityIQ	Default	Workflows

IdentityIQ is preconfigured with various standard workflows that manage activities. The following workflows are
examples of default workflows that are included with the product:

• Provisioning of roles or entitlements

• Account management

• Identity creation

• Password management

The default workflows can be configured and customized to address the specific business requirements of each
installation. Additionally, you can write new workflows and apply them to any of the actions in IdentityIQ that
support workflows.

Workflow	Types

Default workflows have pre-defined workflow types. IdentityIQ uses these assigned types to determine which
workflows to present in the Business Process configuration list boxes. Workflows can be specified to activate
based on a specific system event.

For example, role create, update, and delete actions can trigger a RoleModeler type of workflow. Only workflows
of that type are listed in the drop-down list for that configuration option.

Note: You can assign custom types to workflows. However, custom type workflows can only be
triggered through the user interface on Lifecycle Events, which can trigger workflows of any
type.

The table below lists the workflow type associated with each type of action within IdentityIQ.

Identity Attribute Change Configured with a Value Change Workflow.
Select Global Settings from the gear icon menu and go to the Identity
Mapping page. Click an attribute to edit or add a new attribute. On the
Edit Identity Attribute page, go to the Advanced Options -> Value
Change Workflow option to select the business process.

Policy Violation Select Policies from the Setup menu, select or create a new policy,
and specify the business process behavior

Table 51—Workflow Types

Process Type Description

Policy Violation Workflow activated to launch policy violation actions.

Batch Provisioning Workflow activated to launch batch requests.

Scheduled Assignment Workflow activated to when a role is ready to be assigned.

Table 50— IdentityIQ Setup for Workflows

Workflow Trigger IdentityIQ Setup
SailPoint IdentityIQ System Administration Guide 163

IdentityIQ Default Workflows
Sub-process	Workflows

Some complex workflows are divided into multiple sub-process workflows that are activated by a master
workflow. Using sub-process workflows with a master workflow can:

• Simplify the structure of the master workflow

• Make workflows easier to manage

• Promote re-usability because more than one master workflow can reference the same sub-processes

As a standard practice, these smaller workflows are assigned the Subprocess type of workflow. This type is not
associated with any system functionality. However, using the Subprocess type designation enables you to easily
identify the workflow as a sub-process of a larger workflow.

Scheduled Role Activation Workflow activated when a role is ready to be enabled or
disabled.

Managed Attribute Workflow activated when an entitlement is created or edited.

Identity Correlation Workflow activated when performing identity correlation
tasks.

Identity Event Workflow activated for identity event. For example,
sunrise/sunset dates for deferred entitlement, role
assignment, or role removal.

Identity Lifecycle Workflow activated for Lifecycle events. For example, Lifecycle
Event - Joiner or Lifecycle Event - Leaver.

Identity Update Workflow activated when you update an identity through the
Identity -> Identity Warehouse page. Typically requires few or
no approvals.

Identity Refresh Workflow activated for identities that are refreshed using the
Identity Refresh task. This type of process can be used for
additional customization during refresh, and to present
provisioning policy forms if accounts need to be created as a
result of automated role assignment.

LCM Identity Workflow associated with Lifecycle Manager Identity related
tasks, for example, LCM Create and Update.

LCM Provisioning Workflow activated for Lifecycle Manager provisioning tasks.

LCM Registration Workflow activated for registration tasks.

Policy Violation Workflow activated to initiate policy violation actions.

Role Modeler Workflow associated with Role functions. For example, Owner
Approval and Role Activation.

Subprocess Designation of a workflow which is part of a larger workflow.

Password Intercept Workflow activated when a password change interception
event is received.

Table 51—Workflow Types

Process Type Description
164 SailPoint IdentityIQ System Administration Guide

IdentityIQ Default Workflows
Transient	Workflows

Transient workflows are launched in a special mode that does not persist any information to the database. A
workflow remains in the transient state until the workflow reaches an approval step. If the workflow launches
to completion without an approval step, nothing is stored in the database unless the browser terminates or the
session times out the workflow and any progress made is lost.

Note: If the browser terminates or the session times out the workflow and any progress made is lost.

Examples of transient workflows include:

• QuickLaunch workflows that can present a series of forms before performing any relevant actions.

• Self-registration workflows that do not require authentication

• Workflows for users trying the registration process, who do not have an inbox where they can see their
past attempts

To create a transient workflow, add a variable named transient and set the value to true.

For transient workflows to work correctly, the user interface code needs to manage the workflow case in a
special way, through a WorkflowSession.

The case persists when any of these things happen:

• an approval for someone that is not the submitting user

• a step with a wait='x' in it

• a step with background='true'
SailPoint IdentityIQ System Administration Guide 165

IdentityIQ Default Workflows
166 SailPoint IdentityIQ System Administration Guide

Creating and Editing Workflows
Chapter	13:	Using	the	Business	
Process	Editor	with	Workflows

The IdentityIQ user interface provides a graphical tool for defining and editing workflow processes. You can use
the IdentityIQ Business Process Editor to:

• Create a new workflow or edit an existing workflow

• Set up the workflow structure.

• Create the steps that define the behavior or the workflow.

• Outline the transitions between the steps.

• Define forms.

• Assign conditions.

This tool also provides a graphical representation of the process flow that can be used to create documentation
about the activities included in the workflow.

Typically, administrators use the graphical editor to outline the process and then move to the XML
representation to add to or adjust the details of each step. After you save the process, you can view, edit or
export the XML representation from the IdentityIQ Debug pages.

Note: Because some workflow steps cannot be defined with the graphical editor, workflow
development can involve direct editing in the XML representation and some amount of Java
coding. An understanding of XML and Java syntax is a general requirement for workflow
development.

Creating	and	Editing	Workflows

Use the Business Process Editor to create a new workflow or edit an existing workflow. Original workflows can
also be created from existing processes.

Basic	Workflow	How-To	Tasks

You can perform the following tasks:

• “How To View or Edit a Workflow” on page 167

• “How To Create a New Workflow” on page 168

• “How To Use an Existing Workflow to Create a New Business Process” on page 168

How	To	View	or	Edit	a	Workflow

1. Navigate to Setup -> Business Processes.

2. Select an existing workflow from the Edit an Existing Process list.

3. Navigate through each of the process tabs to view or modify the workflow data.

4. To save changes to an existing workflow, click Save.
SailPoint IdentityIQ System Administration Guide 167

Process Editor Tabs
How	To	Create	a	New	Workflow

1. Navigate to Setup -> Business Processes.

2. Click New to create a new workflow and then enter a name for your process.

3. Specify a name and description for the workflow. Use a short descriptive name for the workflow and use a
the description that provides an overview of the workflow function.

4. In the Type field:

a. Select from the drop-down list of predefined workflow types. The available types are restricted to
the process options related to the workflow.

b. To enter a custom type, manually enter the type name in the box instead of selecting one from the
list. See the Workflow Basics chapters for any limitations to custom types.

5. Navigate through each of the process tabs and specify workflow data.

6. Click Save.

How	To	Use	an	Existing	Workflow	to	Create	a	New	Business	Process

1. Navigate to Setup -> Business Processes.

2. Select an existing workflow from the Edit an Existing Process list.

3. Navigate through each of the process tabs to view or modify the workflow data.

4. Click Save As and enter a unique name for the workflow.

Process	Editor	Tabs

The Process Editor has the following tabs:

Process	Details	Tab

The Process Workflow tab has the following options:

Table 52—Process Editor Interface Tabs

Interface Tab Inputs

Process Details Specify Name, Type, and Description of the workflow.
See "Process Editor Tabs" on page 168.

Process Variables Specify any variables that apply to the workflow. Variables in any input variables,
return values, and working variables for use within the process's steps.
See "Process Variables Tab" on page 170.

Process Designer To graphically represent the process, specify the actions involved in each step, and
provide the evaluation conditions for moving from one step to another.
See "Process Designer Tab" on page 171.

Process Metrics Review statistics gathered for the process as it launches.
See "Process Metrics Tab" on page 181.
168 SailPoint IdentityIQ System Administration Guide

Process Editor Tabs
Table 53—Process Detail Tab - Available Process Types

Process Type Description

Policy Violation Workflow activated to launch policy violation actions.

Batch Provisioning Workflow activated to launch batch requests.

Scheduled Assignment Workflow activated to when a role is ready to be assigned.

Scheduled Role Activation Workflow activated when a role is ready to be enabled or
disabled.

Managed Attribute Workflow activated when an entitlement is created or edited.

Identity Correlation Workflow activated when performing identity correlation
tasks.

Identity Event Workflow activated for identity event. For example,
sunrise/sunset dates for deferred entitlement, role
assignment, or role removal.

Identity Lifecycle Workflow activated for Lifecycle events. For example, Lifecycle
Event - Joiner or Lifecycle Event - Leaver.

Identity Update Workflow activated when you update an identity through the
Define -> Identity page. Typically requires few or no approvals.

Identity Refresh Workflow activated for identities that are refreshed using the
Identity Refresh task. This type of process can be used for
additional customization during refresh, and to present
provisioning policy forms if accounts need to be created as a
result of automated role assignment.

LCM Identity Workflow associated with Lifecycle Manager Identity related
tasks, for example, LCM Create and Update.

LCM Provisioning Workflow activated for Lifecycle Manager provisioning tasks.

LCM Registration Workflow activated for registration tasks.

Policy Violation Workflow activated to initiate policy violation actions.

Role Modeler Workflow associated with Role functions. For example, Owner
Approval and Role Activation.

Subprocess Designation of a workflow which is part of a larger workflow.

Password Intercept Workflow activated when a password change interception
event is received.
SailPoint IdentityIQ System Administration Guide 169

Process Editor Tabs
Process	Variables	Tab

The Process Variables tab lists variables you can use with the workflow. For most of the default processes, the
variables are listed in a collapsed, advanced view. You can expand the view to show the details for each variable.
Variables include:

• Input variables for workflow

• Output variables for workflow

• Working variables used for processing a workflow

Variables are marked as Input, Required, Editable, or Output.

To delete a variable, expand the variable and click Remove.

Note: The order of variable declarations can make a difference. For variables in the XML that
reference other variables in their initializations, the referenced variable must be declared first.

When variables are created through the user interface, the new variables are inserted in the list above the
existing variables. When the XML representation of the workflow is generated, the variables are listed in the
order they were created, which is the opposite of the display order in the user interface.

Basic	View

IdentityIQ has several built-in business processes that are available when you install the product. The commonly
used processes are available through the Basic View which is a simplified, form-based view. The information you
edit in the Basic View can be also be configured or removed using the Advanced View. The Basic View includes
the following business processes:

Note: Business processes with the LCM label are part of IdentityIQ Lifecycle Manager, which is
licensed separately.

• Identity Update

• LCM Create and Update

• LCM Manage Passwords

• LCM Provisioning

• LCM Registration

How	to	Use	the	Basic	View

1. Navigate to the Debug page and edit the XML of the business process.

Table 54—Process Variable Flags

Object Usage

Input Specifies that the variable is one of the arguments to the workflow, passed in when
it is launched.

Output Stores the variable in the workflow's task result to allow the user to view the progress
and results of the workflow. To view the results, navigate to Setup -> Tasks -> Task
Results.

Editable Enables the variable to be edited in the basic view.

Required Indicates that the variable must contain a value (non-null) when the workflow starts.

Description A brief description of the variable and its function.
170 SailPoint IdentityIQ System Administration Guide

Process Editor Tabs
2. Manually add and configure the configForm attribute to reference the form to be presented in the Basic
section of process variables. See also “Editing Workflow XML” on page 183.

Note: If the reference exists in the business process, but the form does not, an error is displayed and
you are returned to the Advanced view.

Variable	Initialization

To initialize variables for the workflow, specify an initial value for the variable in this panel. For best results, use
initial values for the workflow variables, rather than creating multiple process steps to initialize each variable.

There are five ways that initialization can occur:

Note: Variable values passed into the workflow through workflow arguments supersede variable
initial values. Therefore, any value provided in an argument overwrites the initial value for that
argument.

Timing	of	Variable	Definition

Variables that are known at the beginning of workflow development can be defined before the graphical process
design begins. Throughout the development process you might need to define other variables. Variables are not
restricted to only those that were previously defined on the Process Variables tab. Variable definition can be
done before, during, or after the design process.

Process	Designer	Tab

The majority of the work in creating and modifying a workflow is done on the Process Designer tab. The steps
and transitions you create for workflow determine the workflow activities and can include the following items:

• “Process Steps” on page 171

• “Approval Steps” on page 175

• “Form Steps” on page 177

• “Step Conditions” on page 180

• “Step Transitions” on page 180

Process	Steps

A workflow involves a minimum of three steps: a start step, a processing step, and a stop step or END. For best
results, all workflows should contain a start and stop step and that these two steps contain no actions. Workflows

Table 55—Variable Initialization Options

Object Usage

String Assigns a literal value to the variable.

Reference Sets the variable value through a reference to one of the other workflow process
variables.

Script Sets the variable with a Beanshell script inside the workflow.

Rule Sets the variable by calling a Beanshell rule outside the workflow.

Call Method Assigns the return value of a call to a compiled Java method in a workflow library to
the variable.
SailPoint IdentityIQ System Administration Guide 171

Process Editor Tabs
can contain as many or as few processing steps as are necessary to manage the required actions. To add steps
using the Process Designer, navigate to the Process Editor and click the desired step type in the Add A Step
section. You can drag steps around the Process Designer grid to line them up visually in a logical progression.

To add a new step:

1. Click Add a Step in the left-hand column to display panel that contains available steps.

Note: Only steps associated with the process type and that exist in the Step Library are listed in the
Add a Step panel.

2. Click and drag the desired step to a position in the process design grid.

To edit to the contents of a step,

1. Right-click the step icon and select Edit Step.

2. The step details window displays. You can:

- Record the Name and Description of the step.

- Name the Result Variable, a variable to receive the resulting value of the step action.

- Specify the Action for the step.

 Each step can take one of the types of actions listed in the following table.

Note: For any of these actions, an appropriate value must be specified or selected before the action
can be saved.

For example, if Script is selected, a BeanShell script must be entered in the box. If you choose
the Subprocess object, a subprocess must be selected from the list. If the value is not specified,
the step is saved with no associated action. Developers who use subprocesses must write the
subprocesses before they can complete the step definition of steps in the master process.

The Enable Monitoring flag on this window turns on metrics tracking for the step. See “Process Metrics Tab” on
page 181 for more information on process monitoring and metrics.

Script

Scripts are java BeanShell code that you write in order to execute a desired action. You write scripts directly in
the Source box in the detail window for the step.

Table 56—Process Step Action Types

Object Usage

Script Executes a segment of Java BeanShell code that is included in the step.

Rule Executes a workflow Rule — a block of Java BeanShell code encapsulated in a reusable
rule.

Subprocess Launches another defined workflow, passing control to it until it completes. When
you select this option, the list of available subprocesses, workflows of type
Subprocess, displays and you are given the option to enable step replication.

Call Method Calls a compiled java method in the IdentityIQ workflow library, exposed through the
standard workflow handler. When you select this option, the list of available methods
displays.
172 SailPoint IdentityIQ System Administration Guide

Process Editor Tabs
Note: The script examples in this document all show very short java BeanShell code blocks. There is
no set length for a script. A script block within the XML can be any length needed to accomplish
the required processing. However, long scripts are frequently encapsulated in rules, as
discussed in the next section.

Rule

Rules are also blocks of java BeanShell code. Code encapsulated in a rule is available for reuse by other areas of
the application that can launch a rule of the same type. Rules created through this window are of type Workflow
and can be used by any workflow. When you choose Rule as the Action, you can select an existing workflow rule
from the list or create a new rule in the rule editor. To open the rule editor, Click the . . . icon.

Subprocess

Subprocesses are other workflows. You can use subprocesses to subdivide complex processes into smaller
segments that can be easily managed and reused by other workflows. Subprocesses are complete workflows that
contain a start step, a stop step, and as many processing steps as are needed to complete their activities.

You can enable step replication to enable multiple subprocesses to run to completion at the same time instead
of having them run serially. For example, in an approval step, you can launch multiple approval subprocesses, to
multiple approvers, that can take an approval all of the way through provisioning instead of the approval step
waiting for all approvals to complete before provisioning can begin.

When you enable replication, you must select an item from the main workflow for replication and an argument
that is passed to the action containing the replicated item. Only one item can be replicated per step, and all of
the items must be passed the same argument. A new subprocess is generated for each item replicated.

Call

The IdentityIQ workflow library contains a set of methods that you launch within a workflow. Methods are
exposed through the standard workflow handler that the workflow engine calls every time an action occurs in a
workflow. Every workflow has access to the methods in the standard workflow handler. Additional libraries of
methods are also available to use in workflows.

Note: When no library list is specified for the workflow, the default includes access to the Identity,
Role, PolicyViolation, and LCM libraries.

Through the XML, you can specify other libraries, including custom libraries for an installation. The user interface
does not provide an option to manage the library list

Note: Specifying a library list overrides the default. You must explicitly include in the library list any
default libraries that contain methods the workflow needs. See “Workflow Element” on
page 185 for more details on specifying a library list.

When Call Method is selected for the workflow step, Action, the method name is selected from the Call Method
list. The methods in these workflow libraries are listed and briefly described in “Workflow Library Methods” on
page 206.

Step	Arguments

When arguments need to be passed to the script, rule, subprocess, or library method launched by a step, you
must specify the argument on Arguments tab for the step. Arguments can be specified in the following ways:
SailPoint IdentityIQ System Administration Guide 173

Process Editor Tabs
 When a script, rule, or library method is used to calculate an argument value, the configuration can be more
complex. If the argument definition needs data to be passed in, you can pass the data by:

• Providing all the current values of workflow variables.
OR

• Declaring the value of step arguments above an argument.

If desired, you can use ordered step arguments instead of workflow variables if the only use for the value is within
this step.

For example, when these two step arguments are declared in this order, the method called to populate
Identity_mgr can use the value in Identity_name in its processing if needed.

Table 57—Step Argument Specifications

Type Usage

Basic View Some steps copied from the step library include a configuration form to simplify the
specification of arguments. When a step has a configuration form, this is called the
Basic View and is shown by default. The Basic View allows you to set arguments using
literal values.

Advanced View The advanced view gives you more control over how the argument values is
calculated.

Return Variables Each step can return only one result variable, which can be specified through the user
interface. When a step has an action that launches a subprocess, you can also use
return variables. Multiple values can then be passed back from the subprocess to the
main workflow. Because the user interface does not provide a vehicle for declaring
return variables, You must specify the return variables directly in the XML. See
“Return Variables” on page 170 for more information.

Table 58—Step Argument Specifications

Type Usage

String A literal value. For example, the name of an email template to use.

Reference A reference to one of the workflow's process variables.

Script A segment of java BeanShell code that returns a value.

Rule A workflow rule that returns a value. This functions similar to Script except BeanShell
is contained within a re-usable rule.

Call Method A call to a workflow library method that returns a value.

Table 59—Step Argument Example

Argument
Name

Value Type Value Source

Identity_name Reference IdentityName

Identity_mgr Rule getManagerRule
174 SailPoint IdentityIQ System Administration Guide

Process Editor Tabs
More	on	Start	and	Stop	Steps

Similar to other steps, start and stop steps can contain actions that launch scripts, rules, subprocesses, or calls
to workflow library methods. By convention, these steps are included in every workflow but are used only to
designate a clear starting and ending point for the workflow. These steps are generally empty steps with no
action. Occasionally, debugging messages can be printed from these steps to trace workflow progress during
development.

Step	Icons

When steps are first added through the Process Designer, only three icon types are available: Start, Stop, and
Generic Step. A variety of other icons are available. You can use different icons to make it easier to determine
the actions each step performs.

To change an icon for a step:

1. Right-click the step icon and click Change Icon.

2. Select the desired icon style from the pop-up window.

Approval	Steps

Approval steps are a special type of step in IdentityIQ. You can use Approvals to gather data from a user through
a work item. In an approval, the user is asked to review a requested action, such as, granting a role to an identity,
and then give their approval for the action to be processed.

To create a basic approval through the user interface:

1. Right-click the step.

2. Click Add Approval.

Note: A step can contain an action or an approval, but not both. Approval steps are used for approval
processing. Approval steps are not used to perform other actions such as scripts, subprocesses,
etc.

To edit an approval that exists in a step

1. Right-click the step and click Edit Approval.

2. Alternatively, you can choose Edit Approval from the Step Details window.

Approvals are flexible and meet a variety of business needs. An approval can be constructed many ways.
approvals range from a simple one-person approval to a complex approval process that involves multiple people
with different approval modes and notification schemes.

Approval	Details

Every approval includes the following fields to be completed on the Details tab for the approval:

Table 60—Approval Step Details

Object Usage

Name User-defined name for the approval.

Send Comma-separated list of process variable names to be sent to the approval.

Return Comma-separated list of variables names to copy from the completed approval work
item back into the workflow.
SailPoint IdentityIQ System Administration Guide 175

Process Editor Tabs
Approval	Arguments.

You can set arguments to the approval on the Arguments tab. Generally, variables are passed to approval
through the send list. However, any arguments that require transformation, through script, rule, or library
method, must be sent through an Arg element. Args defined with reserved system names are passed through the
Arg element with the reserved name specified. See “Approval Steps” on page 200 for information on reserved
system names.

Work	Item	Configuration

You can specify some details about the notification and escalation/reminder policy for a work item on the Work
Item Configuration tab. The work item appears in the owner's IdentityIQ inbox and requires their input. If no
configuration is specified, the default work item configuration is used.

To change the configuration for the work item

1. Select Override Work Item Configuration.

2. To include an electronic signature in the approval step, select Override Electronic Signature Configuration.

The following configuration options are available on the Work Item Configuration tab:

Renderer JSF (Java Server Faces) include to render the work item details. Not required if using
a default renderer.

Mode Specifies how approval is processed when multiple owners are specified.

Owner Approver for the approval. Can be more than one Identity name and is specified by
string, reference, script, rule, call method.

When more than one owner is specified, mode determines how and when the item
is submitted to each listed owner. Parallel, parallelPoll, and any modes submit the
approval work item to all owners at the same time. Serial and serialPoll modes wait
until the first owner completes the approval before submitting to the next approver
in the list.

Description Defines work item description. Shown as the work item Name in the approver's inbox.
Set using string, reference, script, rule, call method.

Table 61—Work Item Configuration Options

Option Description

Initial Notification
Email

To change the notification email template, select the template from the list

Table 60—Approval Step Details

Object Usage
176 SailPoint IdentityIQ System Administration Guide

Process Editor Tabs
Child	Approvals

Use Child Approvals to customize approval processing or presentation for the different sets of identities involved
in the approval process. For example, a change in a user's assigned region requires someone in HR sign off and
also requires manager approval. Although the approval of the user's own manager is required, any HR individual
can completes the sign-off. This type of approval can be created through child approvals.

To create a child approval:

1. Click Add Child Approval on the Details tab for the parent approval.

2. Click the child approval in the Approval Children hierarchy to select it for editing.

To set up the approval described in the example, create two child approvals:

• HR Approval set up — any of the identities who meet the criteria can make the decision for the group

• Manager Approval set up — identity's manager specified as the owner.

Note: The reference variables HRApprovers and identityManager for the example are process
variables defined with initialization scripts that retrieve the appropriate sets of Identities.

If either approval requires a custom work item configuration, you can specify the configuration on the Work Item
Configuration tab for the approval. Work item configurations are inherited by child approvals if configurations
are not specifically overridden for the child. If you want a single custom work item configuration for the entire
set of approvals, the configuration should be specified on Work Item Configuration tab for the parent approval.
In this case, the child approvals inherit the parent configuration.

Form	Steps

 An approval step can also display a form. Forms are a general way to request information from the user and do
not necessarily represent an approval. For example, you can use forms to request a missing attribute such as the
department name for an identity or ask the requester for more information about why they are making the
request.

You can define a form inside the workflow step or you can reference an external form that is shared with other
workflows.

To reference an existing form:

1. Right-click the step and click Add Form.

Escalation Choose an escalation policy:

None: no escalation.

Send Reminders: allows configuration of reminder options, such as days before first
reminder, frequency, email template.

Reminders then Escalation: allows reminder option configuration plus escalation
option configuration, such as reminders before escalation, escalation owner rule,
escalation email.

Escalation Only: allows configuration of escalation options, such as days before
expiration, escalation owner rule, escalation email).

Table 61—Work Item Configuration Options

Option Description
SailPoint IdentityIQ System Administration Guide 177

Process Editor Tabs
2. In the first screen, click Reference Form.

3. In the form reference screen, select a form from the table and select the owner who will be shown the
form.

To create a custom form for gathering data from a user:

1. Right-click the step and click Add Form.

2. In the first screen, click Create.

3. In the form editor, specify the general form properties.

A form includes one or more <i>fields</i> that define what information you want to show and the information
you are asking the user to provide. This form field editor is similar to the field editor for provisioning policies and
uses most of the same options.

Table 62— Form Step Properties

Field Description

Description Work item description text displayed on the user’s Home Page.

Send Comma-separated list of process variables to be passed as initial values for the
form fields.

Return Comma-separated list of form fields to copy back into process variables when the
work item is closed.

Owner The identity to be shown the form. Can be a simple identity name, a name stored
in a process variable, or a name calculated by a script, rule, or library method.

Table 63— Form Step Values - Bottom

Field Attribute Description

Name System-accessible name for field. Used to reference field programmatically.

Display Name Label that is displayed on form for the field.

Help Text Tool tip help text for field.

Type Field type. Impacts rendering of field on form.

Multi-valued Flag to determine if the field can contain multiple values (multi-selectable).

Read Only Field displays a value that cannot be changed.

Hidden Field is not displayed.

Owner Field owner. Does not apply to form fields.

Required Value must be entered.

Refresh Form on
Change

Form is refreshed when the value for this field is changed.
TIP! This field is useful when the value of a field in the form depends on the value in

another field.

Display Only Does not apply for workflow forms.

Authoritative Does not apply for workflow forms.

Value Literal, script, or rule to set the initial value of the field.
178 SailPoint IdentityIQ System Administration Guide

Process Editor Tabs
The form editor also provides the option to specify buttons to include on the form.

To add a button definition:

1. Click Add Button.

2. Select the button Action and specify a behavior of the button.

3. Specify addition button options as described in the table below, and click Save.

During initial form specification, defined buttons and fields are listed together in the left panel in the order they
are added. If some buttons were added before some fields, the button can be intermixed. On the final form,
buttons are always grouped together at the end of the form. When the Form Editor is revisited later, the fields
are listed together first, in the order they were created, and then the buttons follow in the order they were
created.

Note: Buttons can be reordered in the XML to display in a different order on the form.

Allowed Values Allowed values for the field. Displays as a drop-down list box or combo box based
on the multi-valued setting.

Validation Rule or script that validates the value of a field when the form is saved/submitted.
Prevents submission if the value is not valid.

Dynamic Delays the launch of allowed values, scripts, or rules until the field is selected, instead
of launching as soon as the form loads.

Table 64— Button Properties

Function Description

Action Select the action the button takes when pressed. Choose from the following actions:

Next — assimilates form data and advances to the next state, such as
OK/Save/Approve/Submit functionality. Sets status of approval to Approved.

Cancel — Stops form editing, returns to previous page in the user interface, and
leaves work item active.

Back — assimilates form data and returns to the previous state. Sets status of
approval as Rejected and advances workflows.

Refresh — Assimilates the posted form data and regenerates the form.Not a state
transition. Refresh is a re-display of the form.

Label Text to display on the button.

Parameter Name of an optional value to be sent with the form fields when this button is
pressed.

Read Only Non-actionable button.

Skip Validation Ignores the validation when the form is posted.

Value Optional value to be sent with the form fields when this button is pressed.

Table 63— Form Step Values - Bottom

Field Attribute Description
SailPoint IdentityIQ System Administration Guide 179

Process Editor Tabs
Custom forms can also be created or edited through XML. Various advanced form options, such as sections,
multi-column layout, are only available through the XML. See, “Forms” on page 23 for more information.

Step	Conditions

Normally when a transition is made into a step, the step action is executed. In some cases you might want the
execution of the step to be optional. You can add a step condition to control whether or not the step action
executes. Step conditions can also simplify transition lines in the process because you do not have to create many
complex transitions to skip over steps. You can advance from one step to another and let the step conditions
determine if the step is executed.

To edit the step conditions:

1. Right-click any process step.

2. Click Add Step Condition.

3. Specify addition button options as described in the table below, and click Save.

You can express conditions as any of the following:

Selecting the Negate option changes the evaluation to the opposite condition. For example, if the condition
evaluates to False, the negate option changes it to True.

Step	Transitions

Steps are connected through Transitions. Transitions can connect one step to the next sequentially.
Alternatively, steps can include evaluation statements that enable conditional processing, such as certain data
conditions that can cause the workflow to execute Step A versus Step B.

To add a transition do the following:

1. Right-click the process step for starting the transition and select Start Transition.

2. Navigate to the process step for ending the transition, right-click and select End Transition.

3. Right-click the transition icon and select Edit Transition to set the condition.

4. To add additional conditions to this transition, repeat the process.

To edit the transition conditions:

1. Right-click the transition diamond

2. Click Edit Transitions.

3. Specify addition button options as described in the table below, and click Save.

Table 65—Step Transition Conditions

Type Description

Reference Evaluation of a defined process variable. Must be a Boolean variable.

Script Segment of java code that evaluates process variables.

Rule Workflow rule that contains a reusable segment of java code to evaluate process
variables.

Call Method Call to launch a Java method in the IdentityIQ workflow library. Exposed through
standard workflow handler.
180 SailPoint IdentityIQ System Administration Guide

Process Editor Tabs
A step can have as many transitions to next steps as needed. Transition conditions are evaluated in the order they
are listed. The first transition that has no condition, or whose condition evaluates to true is taken. Use the up and
down arrows in the transitions dialog box to re-order the transitions. As a recommended practice, the final
transition should have no condition. That transition is taken when no other transition conditions are met. If a step
only has transitions with conditions, and none of the conditions are met, the workflow ends.

Conditions can be expressed as any of the following:

Transition conditions must evaluate to boolean values. If the value is true, the workflow moves to the step that
the transition references. If the value is false, the next transition in the list is evaluated.

Selecting the Negate option changes the evaluation to the opposite condition. For example, if the condition
evaluates to False, the negate option changes it to True.

Note: Because all processing options should end with the stop step, every workflow should end with
a step that transitions to Stop.

Process	Metrics	Tab

The Process Metrics tab displays the following statistics that are useful for troubleshooting workflows:

• Number of times the workflow launched.

• Number of times the workflow succeeded or failed.

• Average and maximum duration of the workflow.

• Date the workflow last launched.

You can view additional process metrics, including data tracked at the step level, through the Intelligence ->
Advanced Analytics -> Process Metrics Search tab.

To turn on metrics tracking:

1. For individual workflow steps, select Enable Monitoring in the Details window.

2. Alternatively, you can right-click on a step and select Enable/Disable from the drop-down menu on the
step.

To turn on monitoring for all steps in a workflow, click Monitor at the bottom of the business process editor
window.

Table 66—Step Transition Conditions

Type Description

String Not used. This condition is an artifact of the common structure used for variable
setting and does not apply to conditions. A literal value of True or False can be
specified but does not allow any evaluation in the transition. True always launches the
associated step and False always bypasses the associated step.

Reference Evaluation of a defined process variable. Must be a Boolean variable.

Script Segment of java code that evaluates process variables.

Rule Workflow rule containing reusable segment of java code to evaluate process
variables.

Call Method Call to launch a Java method in the IdentityIQ workflow library. Exposed through
standard workflow handler.
SailPoint IdentityIQ System Administration Guide 181

Process Editor Tabs
182 SailPoint IdentityIQ System Administration Guide

Accessing the XML
Chapter	14:	Editing	Workflow	XML
There are various options for editing workflow XML. You can:

• Create the initial workflow through the user interface and then edit the workflow directly.

• Complete all workflow development in XML.

• Write original XM or use XML from an existing workflow as a template for a new process

 All of these methods are valid and can be used as desired.

Accessing	the	XML

The XML for existing workflows can be viewed and edited through the IdentityIQ Debug pages or can be exported
through the IdentityIQ Console.

Debug	Pages

To view the XML in the Debug pages, navigate to the Debug pages and Select Workflow from the object list to
view a list of all defined workflows in the system.

to view the XML representation, click the name of the workflow. From the Debug pages you can edit and save
changes. A workflow can also be copied from here and pasted into an external editor of choice.

• View and edit the XML.

• Save changes to the XML.

• Copy and paste the XML to an external editor.

IdentityIQ	Console

You can export one or more workflows from IdentityIQ through the console. The console export is the most
efficient way to get the XML for all workflows extracted from the system at one time. The IdentityIQ console
export command can extract all the Workflow XMLs together into a single file.

After export the XML, you can parse the XML into a separate file for each workflow and save the files in the
installation source code control system for later use in system environment migrations or in product upgrade
processes.

Table 67—Important Workflow Objects

Object Usage

Workflow Defines the workflow structure and steps involved in the workflow processing.

WorkflowCase Represents a workflow in progress. Contains a Workflow element in which the
process is outlined and current state data is tracked, as well as identifying information
about the workflow target object.
SailPoint IdentityIQ System Administration Guide 183

Dollar-Sign Reference Syntax
Re-importing	the	XML

Because the system only launches Workflow XML that is saved within IdentityIQ, XML documents that are edited
externally must be re-imported for the changes made to them to take effect.

To re-import an externally saved XML document, use the console import command or from the Import from File
page accessed from the Global Settings page.

Dollar-Sign	Reference	Syntax

You can reference workflow variables inside XML tags and in user interface fields using $() notation. These are
resolved into their variable values. For example, if a variable identityName is defined and contains the full name
of an Identity, for example, John Smith, an Arg specified as:

<Arg name="FullIdentityName" value="$(identityName)">

passes “John Smith” as the value for the variable FullIdentityName.

When the variable is used alone, it functions the same as specifying value="ref:identityName. However, the
more common usage is to include the variable in a longer string such as:

<Arg name="Title" value="Role Update for $(identityName)">

which passes “Role Update for John Smith” as the value for the variable Title.

XML	Content

This section describes the elements present in the workflow XML and explains their usage.

Header	Elements

The following three lines must be included as shown in any workflow document. The <sailpoint> tag must, of
course, be matched with a </sailpoint> tag at the end of the workflow document.

<?xml version='1.0' encoding='UTF-8'?>

<!DOCTYPE SailPoint PUBLIC "sailpoint.dtd" "sailpoint.dtd">

<sailpoint>

WorkflowContext launchtime information that Workflower maintains as it advances through a
workflow case. Passed into rules and scripts and to the registered WorkflowHandler.
Contains all workflow variables, step arguments, current step or approval, workflow
definition, libraries, and workflowCase.

Task Result Records the completion status of a task, or in this case, the workflow, contained
within the WorkflowCase.

Table 67—Important Workflow Objects

Object Usage
184 SailPoint IdentityIQ System Administration Guide

XML Content
Workflow	Element

The Workflow tag identifies the name and type of the workflow.

<Workflow explicitTransitions="true" name="WF-Training Hello World Workflow"
type="IdentityUpdate">

The attributes of a workflow element including the following:

Variable	Definitions

The recommended best practice is to identify all variables for the workflow at the top of the XML document. The
variable definitions come next in the XML.

Table 68—Workflow Element Attributes

Workflow Attribute Purpose

configForm A soft reference to a process variable form presented in the Basic View of Process
Variables tab, or a step form presented in the Basic View of the Arguments tab on
the Step Editor panel accessed from the Process Designer tab of the Manage
Business Process page.

name Short descriptive name for the workflow this is displayed in user interface selection
list-boxes and list of existing business processes on the Process Editor window.

type Workflow type. Type is used to filter workflow selection lists in configuration
windows where you select the workflow based on system activities.

explicitTransitions Boolean value indicating that transitions between steps are explicitly specified and
workflow should not resort to implicit, fall-through, transitions when no transition
conditions evaluate to true.

The default setting is false. If you so omit this argument and the specified transition
conditions all evaluate to false, the workflow uses implicit transitions and launches
the next sequential step in the XML. However, if you edit a workflow using the
Business Process Editor, the value is changed to true.

Note: If the developer makes the last transition in any set unconditional, which is
considered best practice, the transitions between steps are smoother.

libraries Lists workflow libraries the workflow needs.

Note: If this attribute is not specified, workflows automatically have access to
Identity, Role, PolicyViolation, and LCM libraries.

stepLibraries Lists workflow step libraries the workflow can access.

Note: If this attribute is not specified, workflows automatically have access to the
Generic Step Library, which provides access to the Start, Stop and Generic steps.

handler The default workflow handler is sailpoint.api.StandardWorkflowHandler. This
attribute does not need to be specified when the default is used. In this case, the
best practice is to omit it.

Note: If you use a custom workflow handler, the custom handler must EXTEND
the default handler and not replace it. The custom handler must be specified in
the workflow Handler argument.
SailPoint IdentityIQ System Administration Guide 185

XML Content
At a minimum, variable elements require a name. Other attributes can indicate the variable type and use, such
as input, required, editable, return. A description can be specified for each variable. When needed, an
initialization value can also be provided. Using the initialization option is the recommended practice rather than
creating separate steps to initialize each variable. Using initialization values is more efficient, easier to read, and
easier to debug, because Trace reports initializations as they occur. For more information, see “Initializer Options”
on page 187.

<Variable input="true" name="project" output="true" required="true">

 <Description>

 Project that has account requests in the QUEUED state.

 </Description>

 </Variable>

<Variable editable="true" initializer="true" name="doProvisioning">

 <Description>Set to true to cause immediate provisioning after the
assignment</Description>

 </Variable>

Some parts of the variable definition are expressed within attributes on the Variables element. Other parts are
expressed through nested elements of their own.

Table 69—Variable Attributes

Variable Attri-
bute

Purpose

name Variable name.

type Variable type. Type declaration is not enforced by the application and is used
primarily for documentation.

initializer Initialization value for the field.

input Flag indicating that the variable is an argument to the workflow. Omitted if not true.

output Flag indicating that the variable is a return value for the workflow. Omitted if not true.

required Flag indicating that the variable is a required field for the workflow. Omitted if not
true.

editable Flag indicating that the variable can be edited by the workflow. Omitted if not true.

Nested Tag within Variable Element

Description Provides a description of the purpose for the variable.

Script Alternative to script in the initializer attribute value. Should be used for initializer
scripts of any length or complexity.

Source Nested within the Script tag and contains the java BeanShell source for the action to
be executed.
186 SailPoint IdentityIQ System Administration Guide

XML Content
Initializer	Options	

The Initializer attribute requires additional attention. When these attributes are set through the user interface,
you can specify the attribute as a string, script, rule, call, or reference. The same options are available directly
through the XML.

Note: The initializer for a variable is only used when a value for the variable is not passed in to the
workflow.

Table 70—Initializer Options

Initializer Type Description and Examples

string Assigns a literal value to the variable.

Note: String is the default initializer option so the "string:" prefix can be included or
omitted.

Examples:
<Variable initializer="string:true" name="trace"/>

<Variable initializer="spadmin" input="true"
name="fallbackApprover">
SailPoint IdentityIQ System Administration Guide 187

XML Content
script Assigns a value based on the results of a Java BeanShell script.

Examples:

(1) In-line Script. Only use for very short, simple scripts.

<Variable initializer="script:(identityDisplayName != void) ?
identityDisplayName : resolveDisplayName(identityName)"
input="true" name="identityDisplayName">

(2) Script within nested <script> element. Use for most script initializers - scripts of
any complexity or length.

<Variable initializer="script:resolveDisplayName(launcher)"
input="true" name="launcherDisplayName">
 <Description>
 The displayName of the identity being who started this
workflow.
 Query for this using a projection query and fall back to
the name.
 </Description>
 <Script>
 <Source>
 // Lookup the launcher's display name for use in email
 templates.
 String returnString = launcher;
 Identity launcherId = context.getObject(Identity.class,
 launcher);
 if (null != launcherId) {
 returnString = launcherId.getDisplayName(); //
First+Last
 }
 return returnString;
 </Source>
 </Script>
</Variable>

rule Assigns a value based on the return value of a workflow Rule.

Examples:

<Variable initializer="rule:wfrule_GetIdentityName"
name="IdentityName">

call Assigns a value based on the return value of a call to a workflow library method.

Example:

<Variable initializer="call:getObjectName" name="roleName">

Table 70—Initializer Options

Initializer Type Description and Examples
188 SailPoint IdentityIQ System Administration Guide

XML Content
Workflow	Description

A description element should be included to describe the purpose of the workflow. Although the description
element is not used in the workflow process, it is recommended for usability. In the user interface, the contents
of this element are displayed on the Process Details tab of the Business Process page. This element should be
included near the top of the workflow, either before or after the variable definition section.

<Description>

 Workflow called when a role is ready to be enabled.

</Description>

Rule	Libraries

Some methods the workflows use are grouped together into Rule Libraries. These Rule Libraries are defined as
rules in IdentityIQ. However, these libraries contain sets of related but unconnected methods that workflow steps
can directly within a script action. Because the rule methods are in rules, rather than in the compiled Java classes,
their functionality can be easily modified to meet the needs of each installation. To make the methods within one
of these rules available to steps within the workflow, the RuleLibraries element must be declared. See the
following example.

Note: Each Reference element applies to one library. Include only the libraries that contain the
required methods in the RuleLibraries declaration for the workflow.

<RuleLibraries>

 <Reference class="sailpoint.object.Rule" name="Workflow Library"/>

 <Reference class="sailpoint.object.Rule" name="Approval Library"/>

 <Reference class="sailpoint.object.Rule" name="LCM Workflow Library"/>

</RuleLibraries>

Note: You can create and reference custom libraries using this same syntax.

Step	Libraries

Step libraries are designed to offer a group of common functions that can be added to existing workflows from
the Add a Step panel Business Process Editor. Step libraries are a collection of steps encapsulated by a workflow
with the template attribute marked true. The steps do not have any transitions and they are not executable. A
Step Library must be defined. See the following example.

Note: The type does not have to be StepLibrary. However, using the StepLibrary type ensures that
these workflows do not appear in other parts of the product.

ref Assigns a value based on a reference to another workflow variable. This type is rarely
used.

Example:

<Variable initializer="ref:otherVar" name="myVar"/>

Table 70—Initializer Options

Initializer Type Description and Examples
SailPoint IdentityIQ System Administration Guide 189

XML Content
<Workflow name="Provisioning Step Library"

 type="StepLibrary"

 template="true">

When you edit a new or existing workflow, you can include a list of step libraries by including a comma separated
list in the stepLibraries attribute. See the following example.

<Workflow name="LCM Provisioning"

 type="Provisioning"

 taskType="LCM"

 libraries="Identity,Role,PolicyViolation,LCM,BatchRequest"

 stepLibraries="Common,Provisioning"

 handler='iiq.api.StandardWorkflowHandler'>

In the example above, when you edit a business process with the LCMProvisioning type, the Common and
Provisioning steps are available in the Add a Step panel of the Business Process Editor.

Steps within a step library workflow can also include a soft reference to a step form that provides a simplified
form-based interface that you can use to add arguments to some steps in the workflow. This form-based
interface adds a Basic view option to the Arguments tab of the Step Editor. The Basic view is built using the
information contained in the referenced form. The Advanced view is a list of all possible arguments and is built
using the list of arguments that the step library references.

When you add a step form reference to a step library, use the configForm attribute, See the following example.

<Workflow name="Provisioning Step Library"
 template="true"
 type="StepLibrary">

 <Step configForm="Provisioning Approval Step Form"
 icon="Task"
 name="Account Approval">
<Arg name="approvalMode"/>

<Arg name="approvalScheme"/>

<Arg name="approvalSet" value="ref:approvalSet"/>
...

In the example above, when you edit an approval step in the Step Editor, the Basic and Advance Views of the
Arguments tab are displayed.

Built-in	Steps

IdentityIQ includes several built-in steps. The Start, Stop, and Generic steps apply to all workflow types. The
following table lists the names, descriptions, and associated workflow types of additional built-in steps.
190 SailPoint IdentityIQ System Administration Guide

XML Content
Step	Elements

The core of the workflow is contained within the step elements. At a minimum, a step should contain:. The action
attribute determines what processing the step performs. Steps usually contain one or more nested <Transition>
elements and ideally also contain a nested <Description> element that tells the reader what the step is intended
to do.

• an icon

• name

• posX attribute

• posY attribute

The action attribute determines what processing the step performs. Steps usually contain one or more nested
<Transition> elements and ideally also contain a nested <Description> element that tells the reader what the
step is intended to do.

<Step icon="Start" name="Start" posX="250" posY="126">

 <Description>

 The workflow's processing starts with this step.

 </Description>

 <Transition to="Initialize"/>

 </Step>

Note: Similar to variables, some parts of a step definition are included as attributes of the step and
others are expressed as nested elements within the step.

Table 71—Included Business Process Steps

Step Description Process Type

Notify Allows users to select categories of recipients to notify, the specific
recipient, recipients for each category, and the specific email template
to use for each category.

Identity
Lifecycle

LCM
Provisioning

Account
Approval

Used for provisioning request approvals. The process assumes many of
the Provisioning Workflow structures exist.

Identity
Lifecycle

LCM
Provisioning

Table 72—Step Element Attributes

Step Attribute Purpose

configForm A soft reference to the form that is presented to the Basic View of the Arguments tab
on the Step Editor panel.

name Short but descriptive name for step displayed in user interface graphical display
below the step icon.
SailPoint IdentityIQ System Administration Guide 191

XML Content
Transition	Element

The transition element indicates the name of the next step the process executes following completion of the
current step and is always nested within a step in the model. Transitions can contain conditions based on a string,
script, rule, call method, or reference (similar to a variable initialization). The return value for conditions must
be a Boolean (True/False). When multiple transitions are stipulated, they are evaluated in the order they are
listed, and the transition for the first condition met is followed. The last transition in the list should, as a best
practice, not contain any conditions so it can be used as the default action.

Transitions contain two attributes:

• to — next step

• when — condition for progressing to the next step

When a script is evaluated as the condition for a transition, it is often specified through these nested elements
instead of as a when attribute on the transition element, especially if you use a long script.

icon Icon to display for the step in the user interface graphical Process Designer.

Valid icon values include:

Start, Stop, Default (Generic Step), Analysis (Launch Impact Analysis), Approval, Audit,
Catches, Email, Message (Add Message), Provision, Task (Launch Task), and Und

posX, posY X and Y indicate positions where the step icon should be displayed on the user
interface graphical Process Designer grid.

Note: If you omit the posX and posY values, the icon is displayed at the top right of
the grid. You can drag the icon around to create the desired layout at a later time.

action The processing action to take for the step, such as a script, rule, subprocess, or call.
See “Step Actions” on page 195.

wait Pauses the action for a specified duration, see “Wait Attribute” on page 199.

catches Causes the step to be launch when Complete status is caught, rather than through a
transition from another step. See “Catches Attribute” on page 199.

resultVariable Variable name that contains the return value from the step.

Nested Tag within Step Element

Description Provide a description of the step purpose.

Transition Identifies the next step the process moves to when the current step is complete, see
“Transition Element” on page 192.

Arg Passes variables to the step. Used for steps that require data to be passed in to them.

Return Receives return values from subprocess steps, see “Return Elements” on page 197.

Script Alternative to script in the Action attribute for the step. Use these step attributes for
action scripts of any length or complexity.

Source Nested within the Script tag and contains the java BeanShell source for the action to
execute.

Table 72—Step Element Attributes

Step Attribute Purpose
192 SailPoint IdentityIQ System Administration Guide

XML Content
Example:

<Transition to=”end”>

 <Script>

 <Source>

 (“cancel”.equals(violationReviewDecision) || ((size(policyViolations)

 > 0) && (policyScheme.equals(“fail”))))

 </Source>

 </Script>

</Transition>

Conditions in the when attribute can be specified using the following types of conditions:

Table 73— Nested Tag Within Transition Element

Nested Tag
Within Transition

Element

Purpose

Script Alternative to script in the transition when attribute. The script should be used for
scripts of any length or complexity.

Source Nested within the Script tag. This tag contains the BeanShell source for the condition
evaluation.

Table 74—Transition Element Conditions

Condition Type Description and Examples

string Not used.This condition type is an artifact of the common structure used for variable
setting and does not apply to conditions. A literal value of True or False can be
specified. However, using one of those literal values does not enable any evaluation
in the transition. True always executes the associated step and False always bypasses
the step.
SailPoint IdentityIQ System Administration Guide 193

XML Content
script Evaluates script result value to determine step transition. Very short scripts are
specified inline on the transition element, within the when attribute. Longer scripts
are expressed within nested <script> and <source> elements.

Note: Because script is the default transition when option, the “script:" prefix can
be included or omitted.

Examples:

(1) In-line Script. Use only for very short, simple scripts.

<Transition to="Exit On Policy Violation"
 when="script:((size(policyViolations)> 0)

 && (policyScheme.equals("fail")))"/>

(2) Longer script within nested <script> tag should be use for transition scripts of any
complexity or length.

<Transition to="end">
 <Script>
 <Source>
 ("cancel".equals(violationReviewDecision) ||
((size(policyViolations)
 > 0) && (policyScheme.equals("fail"))))
 </Source>
 </Script>
</Transition>

rule Evaluates the return value of a workflow rule to determine step transition.

Examples:

<Transition to="Process Approval"
when="rule:RequireApprovalRule">

call Evaluates return value of a call to a workflow library method to determine step
transition.

Example:

<Transition to:"Check Status" when="call:requiresStatusCheck" />

ref Evaluates a defined, Boolean, workflow variable to determine step transition.

Example:

<Transition to="Refresh Identity" when="ref:doRefresh"/>

Unconditional Specified as last transition option to give a default path for the transition.

Example:

<Transition to="Approve"/>

Table 74—Transition Element Conditions

Condition Type Description and Examples
194 SailPoint IdentityIQ System Administration Guide

XML Content
Step	Actions

Most steps involve much more than a name and a transition. Steps also include an action attribute that executes
the workflow processing. The action of a step can be a script or can a rule, subprocess, or a call to a workflow
library method.

Table 75—Step Actions

Action Type Description

Script Similar to scripts in other parts of the workflow XML, the script can be contained
within the action attribute or can be nested within the Step in a <Script> block.

Examples:

(1) In-line Script, used only for very short, simple scripts.

<Step action="script:approvalSet.setAllProvisioned();"
icon="Task" name="Post Provision">
 <Transition to="Stop"/>

</Step>

(2) Longer script within nested <script> tag. Used for action scripts of any complexity
or length.

<Step name="Start" icon="Start" posX="20" posY="20">
 <Script>
 <Source>
 String wfName = wfcontext.getWorkflow().getName();
 System.out.println("Starting workflow: [" + wfName + "]");
 </Source>
 </Script>
 <Transition to="Compile Provisioning Project"/>
</Step>

Rule A step can execute a block of Java BeanShell code encapsulated in a reusable
workflow Rule.

Example:

<Step action="rule:WFRule_verifyIdentity" icon="Task"
name="Verify Identity" posX="600" posY="202">
SailPoint IdentityIQ System Administration Guide 195

XML Content
Arguments

Any variables to be passed to a script, rule, subprocess, or library method must be declared as step arguments
through <Arg> elements. Similar to other variables, the values for arguments can be specified by string, script,
rule, call, or reference. The default specification type is string. Therefore, the “string:” qualifier can be omitted.
However, arguments are also commonly passed by referencing workflow variables.

Step icon="Task" name="Initialize" posX="320" posY="126">

 <Arg name="w" vaflolue="ref:flow"/>

 <Arg name="formTemplate" value="string:Identity Update"/>

 <Arg name="identityName" value="ref:identityName"/>

 …

 <Description>Call the standard subprocess to initialize the request,

 this includes auditing, building the approvalset, compiling the plan into

 project and checking policy violations.</Description>

 …

 <WorkflowRef>

 <Reference class="sailpoint.object.Workflow" name="Identity Request

 Initialize"/>

 </WorkflowRef>

 <Transition to="end">

Subprocess When you include a <WorkflowRef> element within the step and reference the
SailPoint.object.Workflow class and the specific workflow by name, a subprocess is
defined.

Example:

<Step icon="Task" name="Initialize" posX="320" posY="126">
 …
 <WorkflowRef>
 <Reference class="sailpoint.object.Workflow"
name="Identity
 Request Initialize"/>
 </WorkflowRef>
 <Transition to="end">
</Step>

Call Calls to workflow library methods can be used to do step processing.

Note: Call is the default action option. Therefore the "call:" prefix can be included
or omitted.

Example:

<Step action="call:refreshIdentity" icon="Task" name="Refresh
Identity" posX="618" posY="242">

Table 75—Step Actions

Action Type Description
196 SailPoint IdentityIQ System Administration Guide

XML Content
</Step>

When an argument is specified as a script, rule, or call, for example, <Arg name="myVar"
value="rule:myWFRule"/>, any needed arguments to the script, rule, or library method cannot be explicitly
specified.

Because these scripts, rules, and library methods automatically have access to the workflow context object, the
scripts can access workflow variables directly through the workflow context get methods. These
scripts/rules/methods can also access any step arguments that were defined before them in the step
declaration. For example, the method that identifies the value for the Manager argument can use the value in
the identityName argument in its processing, if needed. See the following example.

<Step icon="Task" name="Processing Step" posX="320" posY="126">

 <Arg name="identityName" value="ref:identityName"/>

 <Arg name="Manager" value="call:getManager"/>

 …

</Step>

The following table lists the available Arg attributes

Return	Elements

To return more than one value from a subprocess, you can declare <Return> elements for the step. At a
minimum, a return element contains: a name attribute and a to attribute. The name attribute is the name of the
variable in the subprocess workflow and the to attribute is the variable name in the calling (current) workflow.
If these names are the same in both workflows, a to attribute is not required. However, specifying a to attribute
is a best practice for clarity.

Use the merge attribute when the variable is a List and the returned values should be appended to the current
workflow's list instead of replacing it. Similar to Args, value attribute for return elements can be specified as a
string, script, rule, call, or reference. String is the default. If the value argument is omitted, the value of the name
variable is copied as-is into the to variable, However, a script/rule/method can be used to transform or modify
the value as it is passed.

• name attribute — name of the variable in the subprocess workflow

• to attribute — variable name in the calling (current) workflow

Note: If these names are the same in both workflows, a to attribute is not required. However,
specifying the to attribute is best practice.

<Step icon="Task" name="Initialize" posX="320" posY="126">

 <Arg name="flow" value="ref:flow"/>

 <Arg name="formTemplate" value="string:Identity Update"/>

 <Arg name="identityName" value="ref:identityName"/>

 …

 <Return name="project" to="project"/>

Table 76—Available Arg Attributes

Arg Attribute Purpose

name Variable name in process to which the data is being passed.

value Value to pass into the variable, such as string, script, rule, call, reference.
SailPoint IdentityIQ System Administration Guide 197

XML Content
 <Return merge="true" name="workItemComments" to="workItemComments"/>

 <WorkflowRef>

 <Reference class="sailpoint.object.Workflow" name="Identity Request

 Initialize"/>

 </WorkflowRef>

 <Transition to="end">

</Step>

The following table lists the available Return attributes.

Call

Use calls to workflow library methods to do step processing. Similar to subprocesses, they sometimes require
arguments to be passed to them. You declare method arguments the same way as subprocesses. You use Library
methods with a call action. See the following example.

<Step action="call:refreshIdentity" icon="Task" name="Refresh Identity" posX="618"
posY="242">

 <Arg name="identityName" value="ref:identityName"/>

 <Arg name="correlateEntitlements" value="string:true"/>

 <Description>Add arguments as necessary to enable refresh features. Typically you

 only want this to correlate roles. Don't ask for provisioning since that

 can result in provisioning policies that need to be presented and it's

 too late for that. This is only to get role detection and exception

 entitlements in the cube.</Description>

 <Transition to="Notify"/>

 </Step>

The methods available for the call action are those included in the libraries attribute for the workflow element,
if specified. If no libraries attribute is specified, the workflow automatically has access to the methods in the
Identity, Role, PolicyViolation, and Lifecycle Manager libraries. If other libraries, including custom libraries, are
explicitly listed in the libraries attribute, any of the default libraries whose methods are needed by the workflow

Table 77—Available Return Attributes

Return Attribute Purpose

name Variable name in process from which the data is returned.

to Variable name in the workflow step to which the data is passed.

value Value to pass into the variable, such as string, script, rule, call, reference.

merge Flag indicating that the value should be merged into the target variable instead of
replacing the variable. This attribute is used for list variables.

local Only applies to returns on Approvals, see “Approval Steps” on page 200. A flag that
indicate the value is passed to local storage within the parent approval and not passed
to a workflow case variable. This attribute is used for complex approvals where a work
item state is saved for later analysis in a script.
198 SailPoint IdentityIQ System Administration Guide

XML Content
must also be explicitly included in the list to be available. See “Workflow Library Methods” on page 206 for details
about the methods available in each library.

Note: Installations can create custom libraries for commonly used and required business methods.
However, custom library methods must be named with unique names that do not conflict with
standard library method names. Conflicts resolve as a reference to the standard library
method. It is possible to extend a standard library and overload its method names. Extending
a standard library is not consider a best practice. Therefore, the best practice is to create new
names for nonstandard methods. Creating new names makes it clear that the method is not a
standard method.

Wait	Attribute

The step wait attribute causes the workflow to pause in its execution for the duration specified. The wait value
can be specified as a string, script, rule, call, or reference. String is the default.

<Step name="Wait for next check" wait="ref:provisioningCheckStatusInterval">

 <Description>

 Pause and wait for things to happen on the PE side.

 Use the configurable interval to determine how long

 we wait in between checks.

 </Description>

 <Transition to="CheckStatus"/>

 </Step>

This attribute creates a special type of step with the sole purpose of creating a pause in the action. Wait steps
are commonly used in re-try logic to enable behind-the-scenes processing to occur before the workflow attempts
to repeat an action.

Catches	Attribute

These steps are not caused through a transition from a previous step. These steps are caused by a thrown
message that the steps intercepts or catches. Currently, only a complete message is thrown and can be caught.
This process occurs when one of the following items occurs:

• All sequential steps in a workflow are executed to completion.
OR

• Failure condition results in the termination of the workflow.

<Step catches="complete" icon="Task" name="Finalize">

 <Arg name="project" value="ref:project"/>

 <Arg name="approvalSet" value="ref:approvalSet"/>

 <Arg name="trace" value="ref:trace"/>

 <Description>

 Call the standard subprocess that can audit/finalize the request.

 </Description>

 <WorkflowRef>

 <Reference class="sailpoint.object.Workflow" name="Identity Request Finalize"/>
SailPoint IdentityIQ System Administration Guide 199

XML Content
 </WorkflowRef>

 <Transition to="end"/>

The primary purpose of these steps is to update the IdentityRequest object, which tracks and reports the status
of a LifecycleManager request, making the history of LCM request processing available even after the TaskResult
for the workflow was purged.

Each installation can drive custom logic based on catching this complete message.

Approval	Steps

Approval is one of the most common actions that a workflow process performs. The IdentityIQ Approval model
is constructed to simplify the process of defining an approval structure. Approvals are a special type of step that
contain an <Approval> element, specifying how the approval work item is presented for approval.

Some approval steps are designed to get a user's approval on a requested change, as the name implies. However,
the approval element can be used any time data needs to be gathered from a user.

Typically, when you use approval steps to gather non-approval data, you use a custom form to:

• Present the work item to the user
and

• Request the needed information from the user.

For information on creating approval steps, see the section above. Through the XML, the custom form is
manually defined within an approval step. You can also specify custom forms for traditional approvals when you
need to present the information differently than the standard approval forms layout. See"Workflow Forms" on
page 224 for more details on usage of custom forms.

Similar to other Workflow elements, you specify some modifiers as attributes on the approval element and
specify other modifiers through nested elements within the approval.
200 SailPoint IdentityIQ System Administration Guide

XML Content
Table 78—Approval Step Attributes

Approval
Attribute

Purpose

mode Specifies how an approval is processed. Mode can be determined from string, script,
rule, call, or reference String is the default. The user interface only supports the
selection of a string of one of the values listed below.The XML also enables reference
to a process variable containing one of those values or the specification of a script,
rule, or method call that can determine one of those values programmatically.

Valid values are:
serial - approvers are specified in order and the item is passed to each approver in
that order. If any approver in the chain rejects, the item is rejected.
serialPoll - approvers are specified in order and item is passed to each approver in
that order. Data is collected on approvals and rejections. However, if one approver
rejects, does not necessarily result in the item being rejected. The action decision is
expected to be specified in AfterScript logic.
parallel - item is sent to all named approvers at one time. The item is rejected if any
approver rejects it.
parallelPoll - item is sent to all named approvers at one time. Data is collected on
approvals and rejections but rejection by one does not mean rejection of item. The
action decision is expected to be specified in AfterScript logic.
any - item is sent to all named approvers at one time. The first approver to respond
makes the decision for the group.

owner One or more approvers can be specified by string, script, rule, call, or reference. STring
is the default.

The mode determines how and when the item is submitted to each listed owner when
more than one is specified.

renderer JSF include to render the work item details.

return Comma-separated values (CSV) list of variable names to copy from completed work
items back into workflow.

send CSV list of variable names to include in the work items.

description Defines work item description. For nested approvals, child approvals use the work
item defined by the parent approval unless the child approval defines its own work
item. You can set the description by string, script, rule, call, or reference String is the
default.

validation Used to validate any information the user entered during the approval. This attribute
can be specified as string, script, rule, call, or reference. Script is the default. You
generally use a nested validationScript element instead of a validation argument.

Nested Tag within Approval Element
SailPoint IdentityIQ System Administration Guide 201

XML Content
AfterScript Provides instructions for additional processing to be done on the item after the
approval is complete, and only if approved. Often uses methods in the Approval Rule
Library and LCM Workflow Rule Library. If those methods are to be used, the rule
libraries must be explicitly included in the workflow using the <RuleLibraries>
element.

Note: ParallelPoll and serialPoll items always execute this script after all responses
are collected. With either of these modes, the logic in this script should aggregate
the results and determine if the item should be approved or rejected. The business
determines the criteria for approval or rejection, for example majority rule, any
approval=approval, etc.

In either poll mode, the AfterScript is inherited by child approvals if one is not
specified.In other modes, child approvals do not inherit the after script.

InterceptorScript This script is more complex than the AfterScript and is used less often. The script is
called in several places in the approval processing: at the approval start,
pre-Assimilation, post-Assimilation, when the work item is archived, and at the end of
the approval. The stage of the processing is passed to the script as an argument called
method that can be used to determine what the script should do at that time. The
workflow context's args are also passed to the script.

Method values for conditional analysis within InterceptorScript logic:

startApproval

preAssimilation

postAssimilation

archive

endApprovalIf an InterceptorScript and AfterScript exist, the InterceptorScript
postAssimilation logic launches before the AfterScript.

validationScript Script to perform validation on the work item. For example, you can use this script to
validate any data the user enters on the approval before the data is assimilated. This
script is inherited by any child approvals.

Source Nested within the AfterScript, InterceptorScript, and validationScript tags and
contains the java BeanShell source for the script.

Table 78—Approval Step Attributes

Approval
Attribute

Purpose
202 SailPoint IdentityIQ System Administration Guide

XML Content
The following basic approval step example presents an account change to the identity's manager for approval.
The AfterScript records the approval decision and creates an audit record.

Arg Arguments available to the approval action. Specified by string, script, rule, call, or
reference. Most variables are passed to approval through send list. However, args
that require any transformation must be sent through an Arg element.

Additionally, the following args defined with reserved system names are passed
through the Arg element with that name specified:

workItemRequester

workItemDescription

workItemType

workItemTargetId

workItemTargetName

workItemTargetClass

workItemDisableNotification

workItemNotificationTemplate

workItemEscalationTemplate

workItemReminderTemplate

workItemEscalationRule

workItemEscalationStyle

workItemHoursTillEscalation

workItemHoursBetweenReminder

workItemMaxReminders

workItemPriority

workItemIdentityRequestId

workItemArchive

Return Return value defines how things should be assimilated from a work item back into the
workflow case. This attribute is an alternative to the return attribute CSV of variables.
It is more complex and also more powerful.

This attribute is rarely used in approvals. It is most often used when returning an
approval work item variable to a workflow variable of a different name or when you
need to transform the variable contents of a work item with a script. The use of these
types of return elements follows the same rules as step returns from steps that
subprocesses, with addition of local attribute options. See, “Return Elements” on
page 197.

Table 78—Approval Step Attributes

Approval
Attribute

Purpose
SailPoint IdentityIQ System Administration Guide 203

XML Content
<RuleLibraries>

 <Reference class="sailpoint.object.Rule" name="Approval Library"/>

 <Reference class="sailpoint.object.Rule" name="LCM Workflow Library"/>

</RuleLibraries>

<Step icon="Approval" name="Manager Approval">

<Approval mode="serial" owner="script:getManagerName(identityName, launcher,
fallbackApprover);" renderer="lcmWorkItemRenderer.xhtml"
send="approvalSet,identityDisplayName,identityName,policyViolations">

<Arg name="workItemDescription" value="Manager Approval - Account Changes for User:
$(identityDisplayName)"/>

<Arg name="workItemNotificationTemplate" value="ref:managerEmailTemplate"/>

<Arg name="workItemRequester" value="$(launcher)"/>

<AfterScript>

 <Source>

 import sailpoint.workflow.IdentityRequestLibrary;

 assimilateWorkItemApprovalSet(wfcontext, item, approvalSet);

IdentityRequestLibrary.assimilateWorkItemApprovalSetToIdentityRequest(wfcontext,
approvalSet);

auditDecisions(item);

</Source>

 </AfterScript>

</Approval>

 <Description>

 If approvalScheme contains manager, send an approval for all

 requested items in the request. This approval will get the entire

 approvalSet as part of the workitem.

 </Description>

<Transition to="Build Owner ApprovalSet"

 when="script:isApprovalEnabled(approvalScheme, "owner")"/>

<Transition to="Build Security Officer ApprovalSet"

 when="script:isApprovalEnabled(approvalScheme, "securityOfficer")"/>
204 SailPoint IdentityIQ System Administration Guide

XML Content
<Transition to="end"/>

 </Step>

Note: In the AfterScript in this example, the methods not qualified by the library name are in the LCM
Workflow Rule Library that is available to the workflow through the <RuleLibraries>
declaration.

The assimilateWorkItemApprovalSetToIdentityRequest method is part of the
IdentityRequestLibrary, this is available to the script through the import of that library in the
script.

Library methods called through step action attributes are available through the workflow
libraries attribute list,. However, when the library methods are executed from within scripts,
the library must be specifically imported for the script.

Nested	Approvals

Child approvals created through the user interface are expressed as nested approval elements in the XML.When
nested approvals exist, the parent ceases to be an approval of its own.In those case, the sole purpose of the
parent approval is to organize and contain the child approvals. The mode on the parent determines how to
process the set of peer child approvals.

 <Approval mode="string:parallel" name="Approve Region" owner="ref:regionApprover"
 send="identityName,region">
 <Arg name="workItemDescription" value="string:Approve Region for
$(identityName)"/>
 <Approval name="childApproval1" owner="string:Walter.Henderson"
 send="identityName,region"/>
 <Approval name="childApproval2" owner="string:Alan.Bradley"
 send="identityName,region"/>
 </Approval>

In the example above, childApproval1 and childApproval2 are processed in parallel. Because both of these child
approvals are identical (no custom work item config and no children of their own), the same objective can be
accomplished with a single approval with multiple owners:

 <Approval mode="string:parallel" name="Approve Region"
 owner="string:Walter.Henderson,Alan.Bradley" send="identityName,region">
 <Arg name="workItemDescription" value="string:Approve Region for
$(identityName)"/>
 </Approval>

Nested approvals can be used effectively when different approval levels are implemented with custom
configurations and specifications. For example, the workItemConfig for each of the child approvals can be
different, which can result in a notification scheme, escalation policy, etc. for the different approvers.

Nested approvals can be governed by a different approval mode from the one used on the master set and/or can
contain their own child approval levels. One child approval can be done as an any approval, one that accepts the
ruling of the first responder of several listed approvers, while the highest approval level is managed serially.
Another child approval can implement custom workItemConfigs for its own child approvals. The example below
illustrates all of these concepts.
SailPoint IdentityIQ System Administration Guide 205

Workflow Library Methods
Nested approvals can be used effectively when different approval levels are implemented with custom
configurations and specifications. For example, the workItemConfig for each of the child approvals can be. The
following example that illustrates all of these concepts.

 <!-- Approval submitted to HR and to supervisor and manager in serial manner -->
 <Approval mode="string:serial" name="Approve Region" owner="spadmin"
 send="identityName,region">
 <Arg name="workItemDescription" value="string:Approve Region for
$(identityName)"/>

 <!-- HR Personnel approve region (whoever responds first makes decision) -->
 <Approval name="HRApproval" mode="string:any"
 owner="ref:HRApprovers" send="identityName,region"/>

 <!-- Supervisor and Manager approve region serially after HR approves -->
 <!-- Each has a different email template (work item config) for notification -->
 <Approval mode="string:serial" name="SupMgrApproval" send="identityName,region">
 <Approval name="Supervisor" send="identityName,region" owner="Tom.Jones">
 <WorkItemConfig escalationStyle="none">
 <NotificationEmailTemplateRef>
 <Reference class="sailpoint.object.EmailTemplate"
 name="SupervisorApprovalEmail"/>
 </NotificationEmailTemplateRef>
 </WorkItemConfig>
 </Approval>
 <Approval name="Manager" send="identityName,region" owner="Mary.Peterson">
 <WorkItemConfig escalationStyle="none">
 <NotificationEmailTemplateRef>
 <Reference class="sailpoint.object.EmailTemplate"
name="ManagerApprovalEmail"/>
 </NotificationEmailTemplateRef>
 </WorkItemConfig>
 </Approval>
 </Approval>
 </Approval>

This ability to nest approvals, with options to assign different approval modes and work item configurations to
each, enables implementers to create highly customized approval structures to meet the needs of the
installation.

Workflow	Library	Methods

Workflow Libraries are sets of compiled java methods. To be accessible to workflows, these libraries must be
specified as a comma separated list in the libraries attribute of the workflow element. The classes for libraries
are named as follows: SailPoint.workflow.[library]Library.class. Only the [library] portion is specified in the
libraries attribute.

The following example makes methods from the SailPoint.workflow.IdentityLibrary.class accessible to the
workflow.

Example:

<Workflow libraries="Identity" explicitTransitions="true" name="Hello World
Workflow" type="IdentityUpdate">
206 SailPoint IdentityIQ System Administration Guide

Workflow Library Methods
Note: If no Libraries attribute is specified on the Workflow element, the workflow can access the
Identity, Role, PolicyViolation, and LCM libraries by default.

The following table lists the workflow libraries and the methods available. Although the Standard Workflow
Handler is not technically a library, the methods in it are accessible to every workflow and are called through the
same syntax as library methods.

Standard	Workflow	Handler

Table 79—Standard Workflow Methods

Method / Usage Description Expected Args
*=required

Object getProperty(WorkflowContext wfc) Returns value of the named
system property.

name*

public Object isProperty(WorkflowContext wfc) Returns true if the named
system property has a
value.

name*

public Object getMessage(WorkflowContext wfc) Returns localized message
for use in task results

message*

type (severity)

arg1-arg4 (up to 4
parameters for the
message)

public Object addMessage(WorkflowContext wfc) Adds message to the
workflow case.

message*

type (optional severity)

arg1-arg4 (up to 4
parameters for the
message)

public Object
addLaunchMessage(WorkflowContext wfc)

Adds message to workflow
case that is displayed in the
user interface. Not kept in
task result. For example,
Request was submitted.

message*

type (optional severity)

arg1-arg4 (up to 4
parameters for the
message)

public Object
setLaunchMessage(WorkflowContext wfc)

Replaces previously added
launch message with a new
message based on new
state.

message*

type (optional severity)

arg1-arg4 (up to 4
parameters for the
message)

public Object log(WorkflowContext wfc) Sends something to log4j. message*

level*

public Object print(WorkflowContext wfc) Prints text to the console. message*
SailPoint IdentityIQ System Administration Guide 207

Workflow Library Methods
public Object audit(WorkflowContext wfc) Creates an audit event.
Enables workflows to put
custom entries in audit log,
which displays in the user
interface.

source*

action*

target

string1 - string4

public Object sendEmail(WorkflowContext wfc) Sends an email message. to*

cc

bcc

from

subject

body

template*

templateVariables

sendImmediate

exceptionOnFailure

public Object launchTask(WorkflowContext wfc) Launches a defined task. taskDefinition*

taskResult

sync (true=synchronous
execution)

public Object scheduleRequest(WorkflowContext
wfc)

Launches a generic event
request.

requestDefinition*

requestName (name to
assign to request)

scheduleDate

scheduleDelaySeconds

owner

Table 79—Standard Workflow Methods

Method / Usage Description Expected Args
*=required
208 SailPoint IdentityIQ System Administration Guide

Workflow Library Methods
Identity	Library

public Object
scheduleWorkflowEvent(WorkflowContext wfc)

Launches a workflow event
request.

requestName (name to
assign to request)

scheduleDate

scheduleDelaySeconds

owner

workflow* (name of
workflow to launch)

caseName (optional case
name to override
default)

public Object commit(WorkflowContext wfc) Commits a transaction. Not
commonly needed in
workflows. Most
commonly used for role
approvals.

creator

archive

public Object rollback(WorkflowContext wfc) Rolls back a transaction.
Not commonly needed in
workflows. Most
commonly used for role
approvals.

none

Table 80—Identity Library Methods

Method / Usage Description Expected Args
*=required

public String getManager(WorkflowContext wfc) Returns the name of the
manager for the specified
identity.

identityName

public Object
calculateIdentityDifference(WorkflowContext wfc)

Derive a simplified
representation of the
changes made to an
identity for an approval
work item.

oldRoles

newRoles

plan

approvalSet

Table 79—Standard Workflow Methods

Method / Usage Description Expected Args
*=required
SailPoint IdentityIQ System Administration Guide 209

Workflow Library Methods
private void
addLinksInformation(WorkflowContext wfc)

Modifies workflow
context lists of links
(accounts) to be added,
moved, or removed for
the identity as a result of
the provisioning plan.

linksToAdd

linksToMove

linksToRemove

plan

public List<Map<String,Object>>
checkPolicyViolations(WorkflowContext wfc)

Evaluate policy violations that can be incurred by
the provisioning plan/project's actions

Evaluates policy violations
that the provisioning
plan/project actions can
incur.

policies

identityName*

project

plan (either plan or
project is required)

public void
activateRoleAssignment(WorkflowContext wfc)

Assigns a role or roles to
the identity.

identity* (ID)

role* (ID)

detected (Boolean
indicating if role was
detected vs. assigned)

public void
deactivateRoleAssignment(WorkflowContext wfc)

Removes role assignments
from the identity.

identity* (ID)

role* (ID)

detected (Boolean
indicating if role was
detected vs. assigned)

public void refreshIdentity(WorkflowContext wfc) Performs an identity
refresh on one identity.

identity (ID)

identityName (either
identity or identityName
is required)

public void refreshIdentities(WorkflowContext
wfc)

Performs an identity
refresh on a set of
identities. Can specify one
or more identityNames, a
filterString, or a list of
roles. Processes the first of
the above listed options
that is non-null.

identityName

identityNames (CSV)

filterString

identitiesWithRoles
(CSV)

(any one of these 4 is
required)

public Object
compileProvisioningProject(WorkflowContext
wfc)

Compiles a provisioning
plan into provisioning
project.

plan

identityName

Table 80—Identity Library Methods

Method / Usage Description Expected Args
*=required
210 SailPoint IdentityIQ System Administration Guide

Workflow Library Methods
public Object
buildProvisioningForm(WorkflowContext wfc)

Creates a form to display
provisioning policy
questions.

When requiredOwner is
passed as an argument, a
form owned by this user is
returned. If no more forms
for this user exist, null is
returned.

When preferredOwner is
passed as an argument, a
form owned by this user is
returned. If there are no
remaining forms for that
owner, a form owned by a
different user can be
returned.

project*

template (name of form
to serve as page
template)

owner

preferredOwner (owner
or preferredOwner
required but mutually
exclusive)

public Object
assimilateProvisioningForm(WorkflowContext
wfc)

Collects data from
completed a provisioning
form and stores answers
with questions on
provisioningProject.

project*

form*

public Object
assimilateAccountIdChanges(WorkflowContext
wfc)

Updates ApprovalSet with
any changes to
accountIDs.

project*

approvalSet

public Object
buildPlanApprovalForm(WorkflowContext wfc)

Builds a form that
represents all attributes in
a provisioningPlan for an
approval before the
provisioning occurs.

plan*

template

public Object
assimilatePlanApprovalForm(WorkflowContext
wfc)

Collects data from a form
and puts the data back
into the provisioningPlan.
Assumes
buildPlanApprovalForm.

form

plan*

public Object provisionProject(WorkflowContext
wfc)

Called by the Identity
Update and LCM
Workflows after
provisioning forms are
completed. Provisions the
remaining items in the
project.

project*

noTriggers (Boolean)

Table 80—Identity Library Methods

Method / Usage Description Expected Args
*=required
SailPoint IdentityIQ System Administration Guide 211

Workflow Library Methods
public Object finishRefresh(WorkflowContext wfc) Called by the Identity
Refresh workflow, after
approvals are done and
account completion
attributes are gathered.
Provisions what it can and
completes the refresh
process.

identitizer

refreshOptions (map of
args for creating new
Identitizer if needed)

previousVersion

project

public Object buildApprovalSet(WorkflowContext
wfc)

Called by the Lifecycle
Manager workflows.
Builds a simplified
ApprovalSet
representation of the
items in the provisioning
plan.

plan*

public Object
processApprovalDecisions(WorkflowContext wfc)

Processes decisions made
during approval process
audit and react. Modifies
the project masterPlan
and recompiles the
project if the recompile
argument is set to true.

project*

dontUpdatePlan

disableAudit

approvalSet*

recompile

public Object
processPlanApprovalDecisions(WorkflowContext
wfc)

Processes decisions made
during approval process
audit and modifies the
Used before the plan is
compiled into a
provisioningProject.

plan*

dontUpdatePlan

disableAudit

approvalSet*

public Object auditLCMStart(WorkflowContext
wfc)

Creates an audit event to
mark the start of an
Lifecycle Manager
workflow.

approvalSet*

flow (name of applicable
UI flow)

public Object
auditLCMCompletion(WorkflowContext wfc)

Creates an audit event to
mark the completion of
anLifecycle Manager
workflow.

approvalSet*

flow

public void disableAllAccounts(WorkflowContext
wfc)

Used by lifecycle events to
disable managed accounts
for the identity specified in
the workflow.

None

public void enableAllAccounts(WorkflowContext
wfc)

Used by Lifecycle events to
enable all accounts on the
identity specified in the
workflow.

None

Table 80—Identity Library Methods

Method / Usage Description Expected Args
*=required
212 SailPoint IdentityIQ System Administration Guide

Workflow Library Methods
public void deleteAllAccounts(WorkflowContext
wfc)

Used by Lifecycle events to
delete all accounts on the
identity specified in the
workflow.

None

public ProvisioningPlan
buildEventPlan(WorkflowContext wfc)

Go through all links that
the workflow's specified
Identity hold and creates a
plan to enable or disable
all of the Identity's
accounts. Specified by op.

op* (operation)

public void
updatePasswordHistory(WorkflowContext wfc)

Adds a password to the
link password history

plan*

public ProvisioningProject
assembleRetryProject(WorkflowContext wfc)

Adds any account request
for an original provisioning
project that are retryable
and then adds them to a
new provisioning project.

Rarely used in custom
workflows.

project

public Object
retryProvisionProject(WorkflowContext wfc)

Executes the retry
provisioning project,
created in
assembleRetryProject.

Rarely used in custom
workflow.

project

public Object
mergeRetryProjectResults(WorkflowContext wfc)

Merges results from the
retry project onto the
main project. Called
between retries.

Rarely used in custom
workflow.

project*

retryProject*

public Boolean
requiresStatusCheck(WorkflowContext wfc)

Identifies if the project
contains any Results that
are queued with a
requestID stored on the
result.

project

public Object
checkProvisioningStatus(WorkflowContext wfc)

Calls down to the
connector for each Result
in the plan that is marked
queued with a requestID
specified.

project

Table 80—Identity Library Methods

Method / Usage Description Expected Args
*=required
SailPoint IdentityIQ System Administration Guide 213

Workflow Library Methods
The methods are available for use. However these methods are rarely used in a custom workflow. It is
recommended that custom workflows the workflow subprocesses instead of calling the library methods directly.

Note: This information is included for reference purposes and to document the purpose of the
methods and what is passed to them. These explanations are also included to ensure that
customizations do not remove calls to important methods from the subprocess workflows and
to ensure that customizations only add other functionality around these method calls.

IdentityRequest	Library

public Integer
getProvisioningStatusCheckInterval(Workflow
Context wfc)

Compute intervals
between status checks for
a request. The default is 60
minutes.

none

public Integer
getProvisioningMaxStatusChecks(Workflow
Context wfc)

Computes the maximum
number of status checks
permitted during a
request. The default is
infinite.

none

public Integer
getProvisioningMaxRetries(WorkflowContext wfc)

Computes the maximum
number of retries
permitted during a
request. The default is
infinite.

none

public Integer
getProvisioningRetryThreshold(WorkflowContext
wfc)

Computes the retry
threshold, the interval
between retries, to use for
a request. the Default is 60
minutes.

none

Table 81—IdentityRequest Library Methods

Method / Usage Method / Usage Expected Args
*=required

public Object createIdentityRequest(WorkflowContext
wfc)

Create s an IdentityRequest
object from current
workflow context
information. Tracks status
and history of request
processing.

project*

flow

source

policyViolations

public Object
updateIdentityRequestState(WorkflowContext wfc)

Modifies the
IdentityRequest's state.

identityRequestId

Table 80—Identity Library Methods

Method / Usage Description Expected Args
*=required
214 SailPoint IdentityIQ System Administration Guide

Workflow Library Methods
Approval	Library

public Object refreshIdentityRequestAfterApproval
(WorkflowContext wfc)

Refreshes the
IdentityRequest to include
the provisioningEngine that
processes the item.
Updates the state and adds
any expanded attributes
that are provisioned.

project

public Object refreshIdentityRequestAfterProvisioning
(WorkflowContext wfc)

After provisioning, copies
interesting task result
information back to the
IdentityRequest.

project

public Object refreshIdentityRequestAfterRetry
(WorkflowContext wfc)

Scans the retry project and
updates the
IdentityRequestItem retry
count.

project

public Object completeIdentityRequest
(WorkflowContext wfc)

Marks IdentityRequest
status complete. Puts final
plan in request and
refreshes the request
based on the final project.

project

policyViolations

autoVerify (Boolean)

Table 82—Approval Library Methods

Method / Usage Method / Usage Expected Args
*=required

public SailPointObject
getObject(WorkflowContext wfc)

Returns the object being
approved.

none

public String getObjectClass(WorkflowContext
wfc)

Returns the simple class
name of the object being
approved.

none

public String getObjectName(WorkflowContext
wfc)

Returns the name of the
object being approved.

none

public SailPointObject
getCurrentObject(WorkflowContext wfc)

Returns the current
persistent version of the
object held in the
workflowCase
(approvalObject).

none

public Identity
getObjectOwner(WorkflowContext wfc)

Returns the current owner
of the object being
approved. Uses database
lookup.

none

Table 81—IdentityRequest Library Methods

Method / Usage Method / Usage Expected Args
*=required
SailPoint IdentityIQ System Administration Guide 215

Workflow Library Methods
Policy	Violation	Library

public Identity
getNewObjectOwner(WorkflowContext wfc)

Returns the object owner.
In the workflow context,
the owner could be
different than the
database-recorded owner.

none

public String
getObjectOwnerName(WorkflowContext wfc)

Returns name of
ObjectOwner from
getObjectOwner.

none

public String
getNewObjectOwnerName(WorkflowContext
wfc)

Returns name of
NewObjectOwner from
getNewObjectOwner.

none

public boolean isOwnerChange(WorkflowContext
wfc)

Return true if object being
approved has had an owner
change.

none

public boolean isSelfApproval(WorkflowContext
wfc)

Returns True if the user
who launches workflow is
the same as the owner of
the object being approved.
Used to bypass an owner
approval. Assumes that the
user will approve if the user
is the one who is initiating
the request.

none

Table 83—Policy Violation Library Methods

Method / Usage Method / Usage Expected Args
*=required

public Object delete(WorkflowContext wfc) Deletes the current
approval object associated
with this workflow.

none

public Object ignore(WorkflowContext wfc) Ends the workflow
associated with the current
approval object without
performing any actions.

none

public Object mitigateViolation(WorkflowContext
wfc)

Mitigates by temporarily
allowing a policy violation.

expiration*

comments

public Object
getRemediatables(WorkflowContext wfc)

none

Table 82—Approval Library Methods

Method / Usage Method / Usage Expected Args
*=required
216 SailPoint IdentityIQ System Administration Guide

Workflow Library Methods
Role	Library

public Object
getRemediatables(WorkflowContext wfc)

remediator

actor
Use if remediator
argument is not
specified and actor is.
Use remediator in new
method calls.

comments

remediations*

Table 84—Role Library Methods

Method / Usage Method / Usage Expected Args
*=required

public Object
launchImpactAnalysis(WorkflowContext wfc)

Starts an impact analysis
task for a role in workflow.

none

public Object
getRoleDifferences(WorkflowContext wfc)

Calculates the differences
between a role held in
workflow and the
database version of the
role.

none

public Object
auditRoleDifferences(WorkflowContext wfc)

Creates one audit event
for each attribute
difference between role
states. Compares
workflow vs database.

source

action

target

string1

public Approval
buildOwnerApproval(WorkflowContext wfc)

Sets up an approval for the
owner of an object.
Currently used only for
roles.

none

Table 83—Policy Violation Library Methods

Method / Usage Method / Usage Expected Args
*=required
SailPoint IdentityIQ System Administration Guide 217

Workflow Library Methods
LCM	Library

Currently, the Lifecycle Manager Library contains no public methods. All of its methods were moved to the
Standard Workflow Handler.

public List<Approval>
buildApplicationApprovals(WorkflowContext wfc)

For role approvals only.
Builds an approval
structure for the owners
of each application
referenced in the role
profiles. Normally
processed as parallelPoll
to allow application
owners to submit
comments or modify the
role without terminating
the approval process.

none

public void enableRole(WorkflowContext wfc) Marks role as enabled. role (name)

public void disableRole(WorkflowContext wfc) Marks role as disabled. role (name)

public void
setRoleDisabledStatus(WorkflowContext wfc)

Marks role with disabled
status indicated in the
disabled arg.
true = disabled
false = enabled

role (name)

disable (Boolean)

public void
removeOrphanedRoleRequests(WorkflowContext
wfc)

Removes incomplete
requests. Used to
activate/deactivate roles
that no longer exist.

none

public String
getApprovalAuditAction(WorkflowContext wfc)

Called by the
post-approval audit steps,
Audit Failure and Audit
Success, of Role Modeler.
Owner Approval workflow
to determine what type of
action should be recorded
in audit log.

If the role is marked as
disabled, returns
disableRole.

if the role is NOT marked
as disabled, returns
updateRole .

none

Table 84—Role Library Methods

Method / Usage Method / Usage Expected Args
*=required
218 SailPoint IdentityIQ System Administration Guide

Monitoring Workflows
Monitoring	Workflows

After a workflow is initiated, the workflow can launch to completion quickly. Sometimes a workflow can take
additional time to complete its specified actions. Approval steps often create a delay in the processing while the
workflow waits for the approver to review the work item and make a decision on it.

To observe a workflow in flight and understand how much of the process is complete and what actions are
pending, You can examine the Task Result for the workflow on the Monitor -> Tasks -> Task Results page. The
TaskResult for a workflow exists for a period of time following the successful completion of the workflow. Based
on the retention period set, the TaskResult can be purged soon after the process launches to completion. While
the workflow is still in progress, the TaskResult continues to exist and can be examined for current step and
status information.

Viewing	the	Workflow	Case	XML

You can examine the workflow case in XML format from the IdentityIQ console or from the Debug pages.The
status of each step can then be determined from the data recorded in the workflow case.

To get the workflowcase XML from the console:

1. Launch the console.

2. List the workflow cases.

3. Get the specific workflow case in question by name. See the following example.

iiq console

> List workflowcase

[system will list all in-flight workflowcases by ID and name]

> get workflowcase "[workflowcase name]"
[system will display the XML for the workflow case]

To view the workflowcase XML from the IdentityIQ Debug pages:

1. Select WorkflowCase from the object list.

2. Click the specific workflow case from the list to display its XML.
SailPoint IdentityIQ System Administration Guide 219

Monitoring Workflows
220 SailPoint IdentityIQ System Administration Guide

Loops within Workflows
Chapter	15:	Advanced	Workflow	
Topics	

This chapter includes the following advanced Workflow topics:

• Loops within Workflows

• Launching a Workflow from a Task

• Workflow Forms

Loops	within	Workflows

 A loop occurs when a step transitions back to a step that executed previously. The state of that step is
re-initialized and the step is executed again. A loop can transition back any number of steps. You define a loop
transition the same way you would any other transition. However, you must just select a target step that appears
before the loop transition in the process designer.

In most case, when you create a loop transition, you want to give it a conditional <i>When</i> expression. If a
loop transition is unconditional, the workflow can enter an infinite loop and not be able to finish.

Launching	Workflows	from	a	Task	or	Workflow

You can launch workflows from tasks or other workflows without using a system event to trigger the workflow.

Workflows	Launched	from	Custom	Tasks

You can launch workflows from a custom task in IdentityIQ. Because tasks are compiled java classes, the custom
task must be written as a Java method.

To create a workflow from a custom task:

1. Create a WorkflowLaunch object in the Java method.

2. Populate the object with the data the workflow requires.

3. Use the <i>Workflower</i> class to launch the workflow.

It is often necessary for one workflow to launch another workflow. This can be performed in Beanshell using code
similar to the previous example. However, using the workflow library method <i>scheduleWorkflowEvent</i> is
easier. Not only does this method launch a workflow, it also allows you to delay the launch until a time in the
future.

To have one workflow to launch another workflow, create a step and select scheduleWorkflowEvent as the
action. This method requires the following arguments:

 import java.util.HashMap;
 import sailpoint.api.sailpointContext;
 import sailpoint.api.Workflower;
 import sailpoint.integration.ProvisioningPlan;
SailPoint IdentityIQ System Administration Guide 221

Launching Workflows from a Task or Workflow
 import sailpoint.integration.ProvisioningPlan.AccountRequest;
 import sailpoint.integration.ProvisioningPlan.AttributeRequest;
 import sailpoint.object.Identity;
 import sailpoint.object.Workflow;
 import sailpoint.object.WorkflowLaunch;
 import sailpoint.tools.GeneralException;
 import sailpoint.tools.xml.XMLObjectFactory;

 HashMap launchArgsMap = new HashMap();

 String myIdentityName = "T339222";
 Identity myIdentity = context.getObjectByName(Identity.class,
myIdentityName);

 //Create Provisioning Plan and add needed attribute values
 ProvisioningPlan plan = new ProvisioningPlan();
 plan.setIdentity(myIdentity);
 AccountRequest accountRequest = new AccountRequest();
 AttributeRequest attributeRequest = new AttributeRequest();

 accountRequest.setApplication("IIQ");
 accountRequest.setNativeIdentity(wbIdentity);
 accountRequest.setOperation("Modify");

 attributeRequest.setOperation("Add");
 attributeRequest.setName("assignedRoles");
 attributeRequest.setValue("Benefits Clerk");

 accountRequest.add(attributeRequest);
 plan.add(accountRequest);

 //Add needed Workflow Launch Variables to map of name/value pairs
 launchArgsMap.put("allowRequestsWithViolations","true");
 launchArgsMap.put("approvalMode","parallelPoll");
 launchArgsMap.put("approvalScheme","worldbank");
 launchArgsMap.put("approvalSet","");
 launchArgsMap.put("doRefresh","");
 launchArgsMap.put("enableRetryRequest","false");
 launchArgsMap.put("fallbackApprover","admin");
 launchArgsMap.put("flow","RolesRequest");
 launchArgsMap.put("foregroundProvisioning","true");
 launchArgsMap.put("identityDisplayName","John.Smith");
 launchArgsMap.put("identityName","John.Smith");
 launchArgsMap.put("identityRequestId","");
 launchArgsMap.put("launcher","admin");
 launchArgsMap.put("notificationScheme","user,requester");
 launchArgsMap.put("optimisticProvisioning","false");
 launchArgsMap.put("plan",plan);
 launchArgsMap.put("policiesToCheck","");
 launchArgsMap.put("policyScheme","continue");
 launchArgsMap.put("policyViolations","");
 launchArgsMap.put("project","");
 launchArgsMap.put("requireViolationReviewComments","true");
 launchArgsMap.put("securityOfficerName","");
 launchArgsMap.put("sessionOwner","admin");
 launchArgsMap.put("source","LCM");
222 SailPoint IdentityIQ System Administration Guide

Launching Workflows from a Task or Workflow
 launchArgsMap.put("trace","true");
 launchArgsMap.put("violationReviewDecision","");
 launchArgsMap.put("workItemComments","");

 sailpoint.object.ProvisioningPlan spPlan = new
sailpoint.object.ProvisioningPlan();
 spPlan.fromMap(plan.toMap());
 launchArgsMap.put("plan", spPlan);

 //Create WorkflowLaunch and set values
 WorkflowLaunch wflaunch = new WorkflowLaunch();
 Workflow wf = (Workflow)
context.getObjectByName(Workflow.class,"myWorkflowName");
 wflaunch.setWorkflowName(wf.getName());
 wflaunch.setWorkflowRef(wf.getName());
 wflaunch.setCaseName("LCM Provisioning");
 wflaunch.setVariables(launchArgsMap);

 //Create Workflower and launch workflow from WorkflowLaunch
 Workflower workflower = new Workflower(context);
 WorkflowLaunch launch = workflower.launch(wflaunch);

 // print workflowcase ID (example only; might not want to do this in
the task)
 String workFlowId = launch.getWorkflowCase().getId();
 System.out.println("workFlowId: "+workFlowId);

Workflows	Launched	by	Other	Workflows

Installations often have one workflow start another workflow using the scheduleWorkflowEvent method in the
Standard Workflow Handler. One of the initiating workflow steps launches the method through a call action.

Arguments to the step including the following:

Table 85— scheduleWorkflowEvent Arguments

Name Value

workflow Name of the workflow to launch.

requestName Name to be assigned to the request.

Note: If not specified, the name of workflow is the default.

scheduleDate Date and time you want the workflow to launch. Must be specified with a
java.util.Date value. If this argument is not set, the workflow launches
immediately.

scheduleDelaySeconds An alternative to using scheduleDate. When set, the value is the number of
seconds to delay before launching the workflow.

caseName Specify a user friendly name for workflowCase to be displayed in the user
interface.

Note: If no name is specified, the default is the name of workflow.
SailPoint IdentityIQ System Administration Guide 223

Workflow Forms
A workflow that is launched by another workflow is different from a workflow that is launched as a subprocess.
If a workflow is launched as a subprocess, the calling workflow waits until the subprocess is completed. After the
workflow returns control to the caller, the processing continues.

A workflow that is launched by another workflow causes a completely separate workflow to begin launching.
After the new workflow is started, the original or calling workflow moves on to its next step.

Workflow	Forms

Standard work item forms are available for presenting approval or other data requests to approvers. However,
some installations prefer to use custom forms for these activities. Based on the type of the data collection effort,
a custom form might be required. You can build a custom form using a <Form> element in the XML that is
embedded within the <Approval> element.

Note: The <Approval> element can be used to collect data from a user, even if the workflow is not an
approval. You generally use custom forms for these activities because the normal approval
forms do not apply. However, you can also use custom forms for traditional approval activities
when you need a different presentation format.

The basic elements in a Form definition are:

<Form>

 <Attributes>(map of name/value pairs that influence the form renderer)

 <Button> (determine form processing actions)

 <Section>(Subdivision of form; can contain nested Sections and Fields)

 <Field>(can contain Attributes map, Script to set value, Allowed Values Definition
script, and Validation Script)

For detailed information about working with forms, see “Forms” on page 23.

Process	Variable	and	Step	Forms

You use forms added to steps on the Process Designer tab in the Business Process Editor to request required data
from a user that a process needs. For example, you can add a form to a step to request a value for a missing
attribute.

However, to present information on the Basic Views of the Process Variables tab and the Arguments tab of the
Step Editor, you use process variable and step forms.

To simplify the information displayed on the Process Variables tab:

• Variables are displayed in more logical groups.

• Variables that are rarely, if ever, modified are hidden.

Changes made in the Basic View are persisted to the Advanced View and more complex configuration can be
performed there if needed.

launcher Name of the identity to be displayed as the <i>launcher</i> of the new
workflow case. If this argument is not specified, the launcher of the initiating
workflow is used.

Table 85— scheduleWorkflowEvent Arguments

Name Value
224 SailPoint IdentityIQ System Administration Guide

Workflow Forms
The step forms are referenced from the workflows or stepLibraries. These forms define the form that is
presented on the Arguments tab of the Step Editor panel and works similar to the process variable forms.

Both of these forms are referenced from workflows using the configForm variable. The forms can be defined,
viewed and edited on the IdentityIQ debug page.
SailPoint IdentityIQ System Administration Guide 225

Workflow Forms
226 SailPoint IdentityIQ System Administration Guide

Managing Reports
This section contains the following information:

• “Reports Introduction” on page 229

• “Report Use and Customization” on page 231

• “Developing Custom Reports” on page 237

• “Reports DataSource Example” on page 271
SailPoint IdentityIQ System Administration Guide 227

228 SailPoint IdentityIQ System Administration Guide

Report Terminology
Chapter	16:	Reports	Introduction
Reports provide an at-a-glance view of the data in the IdentityIQ instance, which helps the organization manage
system access and the compliance process. Out of the box, IdentityIQ includes a set of core reports in template
form. Individual users and organizations can specify and save customized instances of these templates and run
these reports on a scheduled or ad-hoc basis. Additionally, custom reports can be created to meet the needs of
each customer.

IdentityIQ includes a reporting architecture that simplifies the process of creating custom reports. Basic reports
can be created quickly through an XML specification. A variety of hooks are available for introducing more
complex logic where it is needed to produce the desired report output. The standard report templates that are
part of the product are modeled with this same XML specification structure and can serve as helpful examples
of how custom reports should be structured.

This document explores the report interface and the process of specifying filters to create customized instances
of the available report templates. It also describes the procedures required to create custom report templates
that can also be used to create customized report instances with specific saved filters.

Report	Terminology

This set of terms helps clarify the discussion of the options available for creating custom reports and customizing
report templates by eliminating confusion around which option is which. The following terms are used:

• Report Templates: Out-of-the-box reports as provided with the standard IdentityIQ product. These
report templates are on the Reports tab of the Reports window. The reports can be run directly or edited
to create customized versions. These reports are also referred to as out-of-the-box reports, standard
reports, or standard report templates.

• Custom Reports: Customer-specific reports developed by or specifically for a single customer through a
custom Task Definition specification. These reports are on the Reports tab of the Reports window after
they are saved in IdentityIQ. These report are also referred to as custom report templates.

• Customized Report Instances — User-specific report versions with pre-specified parameters. These
reports are on the My Reports tab of the Reports window. Instances apply to out-of-the-box reports and
custom reports. The terms customized report or instance can also be used in discussing these report
specifications.
SailPoint IdentityIQ System Administration Guide 229

Report Terminology
230 SailPoint IdentityIQ System Administration Guide

Reports Tab
Chapter	17:	Report	Use	and	
Customization

IdentityIQ includes a number of standard reports that are helpful in monitoring and managing compliance and
provisioning activities. These reports can be run with or without filter specification. For example, the
Uncorrelated Accounts Report can run with no filters and return the list of uncorrelated accounts for all
applications in the system, or the report user can specify filters on the report to restrict the results to a subset
of applications. The unfiltered, standard version of each report is accessible and able to be run from the Report
window's Reports tab. When a user chooses to add filters, that report configuration is saved as a customized
report instance on the My Reports tab.

To access the Reports page, from the Navigation menu bar, go to Intelligence -> Reports.

Reports	Tab

The first tab visible on the Reports window is the My Reports page. However, the first time a user access the
Reports page, the My Reports list is empty because My Reports only shows the customized reports you created
and saved based on a report template. The second tab, the Reports tab, is where a new user must start
interacting with reports.

The Reports tab lists all of the available report templates, grouped by report category. The out-of-the-box report
categories are:

• Access Review and Certification Reports

• Account Group Reports

• Activity Reports

• Administration Reports

• Configured Resources Reports

• Identity and User Reports

• Policy Enforcement Reports

• Risk Reports

• Role Management Reports

For each report template, the report name and a brief description of its contents are shown. Reports can be run
directly from this page or can be scheduled to run at some point in the future, either once or on a repeating,
scheduled basis. Any report initiated (immediately or scheduled) from this page is run with no filters applied. In
other words, the report runs for all system objects to which that report applies (all roles, all Identities, all policies,
all access reviews, etc.).

To run a report with no filters, right click the report on this window and then choose Execute to run it once
immediately or Schedule to set it up to run in the future or on a repeating basis.To completely remove the report
from the system, click Delete.

Alternatively, filters and other specifications can be applied to a report and it can be saved as a new report
instance with those parameters already in place. Click the report name in the list or right-click the report and
choose Save as New Report. Both of these options open the Edit Report page that, displays the available filters
and parameters for the report.
SailPoint IdentityIQ System Administration Guide 231

Edit Report Page
Edit	Report	Page

The Edit Report page allows the user to specify filters for the report, saving that configuration as a customized
report instance for future re-use. In the new reporting architecture, every report specification is separated into
multiple Sections. Every report specification includes a Standard Properties and Report Layout section as the first
and last sections, respectively. Any parameters specific to a given report are specified in one or more sections
between these two. Navigate between the “section” pages by clicking the desired page in the Sections list or by
clicking the Next and Previous buttons at the bottom of the Edit Report page.

Standard	Properties

This common set of properties applies to every report, so the Standard Properties page is presented as part of
the Edit Report page for every report.

The table below lists the fields on the Standard Properties page and describes their usage.

Table 86—Reports Standard Properties

Field Name Description Required?

Name The name for the report instance - shown on the My Reports
window as the report's name and on the Report Results page
when the report is run

Yes

Previous Result Action Determines what is done with the results of previous runs of this
report when it is run again

Rename Old — renames existing report results by appending a
numeric value to them
Rename New — renames the run results of the new report by
appending a numeric value to it
Delete — deletes any previously generated report results for
this report, replacing them with the new results
Cancel — prevents the report from running if a previous result
exists

Yes

Description Brief description for the report - shown on the My Reports
window as the report's description (defaults to the report
template's description)

No

Allow Concurrency Determines whether more than one instance of the report is
allowed to be running at a time

No

Scope Assigns a scope to the report which allows it to be seen and used
by any user authorized to that scope; this is the easiest way to
implement report sharing

No

Email Recipients Names Identities to whom the report results should be emailed
when it is generated; these users can view the report results but
are not required by the system to act on them in any way

No
232 SailPoint IdentityIQ System Administration Guide

Edit Report Page
Report	Layout

The Report Layout page shows the columns that are available for inclusion on the report and the columns
selected for inclusion on the report. It allows the user to select a sort field and a group field if desired. It also
allows suppression of either the summary or the detail information as needed.

These are the fields on the Report Layout page, along with descriptions of their usage.

Require Signoff Determines whether anyone is required to sign off on the
report; when this is selected, the Signoff Properties section of
the form appears where the email template and signers are
specified; a work item is created for each of these signers

No

Initial Notification Email Specifies the email template for the email that is sent to notify
the signers of the report work item created for them

Yes, if signoff
required

Escalation Specifies whether reminders should be sent or escalation should
be enacted for the signoff work items. If either or both are
selected, additional parameters specifying the timing of
reminders/escalation are displayed and must be entered

Yes (though
None is the
default)

Signers Specifies the Identities who must sign off on this report.These
Identities receive a notification email and a work item is created.

Yes, if signoff
required

Table 87—Report Layout Fields

Property Name Description Required?

Sort By Specifies the field by which the detail records in the report should
be sorted; if a Group By field is also selected, grouping supersedes
sorting and the records within each group are sorted by the Sort By
field; only columns marked as sortable (sortable=”true” in XML) are
included in this selection list

No

Group By Specifies the field by which the detail records in the report should
be grouped; the group field value is displayed as a section header
within the report body in the on-screen display of the report and in
the PDF (not in the downloaded CSV format) ; only columns marked
as sortable (sortable=”true” in XML) are included in this selection
list

No

Columns Lists columns available for or included in the report; this section is
split into two lists: the left list indicates available columns that are
not selected for inclusion in the report body. The right list displays
the columns that will be in the report in the order in which they will
appear. Column names can be dragged from one side to the other
and can be reordered within the list with drag-and-drop. The arrow
buttons between the two lists can also be used to move columns
around.

Yes

Disable Report
Summary Display

Suppresses the summary section of the report output No

Table 86—Reports Standard Properties

Field Name Description Required?
SailPoint IdentityIQ System Administration Guide 233

Edit Report Page
Report-Specific	Parameters

Most reports implement at least one page between the Standard Properties and Report Layout pages. These are
named differently for each report, and some reports implement several pages while others include only one.
These pages allow the user to specify filter parameters for the report instance. For example, the Uncorrelated
Accounts Report contains one report-specific settings page called Uncorrelated Accounts Parameters; this page
enables the user to specify the Application for which they want to see the a list of accounts that could not be
correlated to existing Identities (from the authoritative application). If no application is selected in this filter, the
report shows all uncorrelated accounts from all applications.

 In some cases, the Report Layout column list will change based on the parameters set on the report-specific
parameters pages. For example, the User Account Attributes Report can display account attributes on selected
applications. If the application selected has attributes (for example, privileged or service accounts) which other
applications don't have, when that application is selected for the report, those columns appear on the Report
Layout page for optional inclusion in the report.

Saving	and	Executing	Report	Instances

Once a report has been customized with filter parameters, sorting and grouping specifications, and custom
column selections or order, it can be saved as a My Reports report instance for future use/re-use. There are
several save options available:

• Save: saves the report instance specification onto the My Reports tab under the name provided on the
Standard Properties window

• Save and Preview: saves the report specification onto the My Reports tab and runs a preview of the
report, which displays the summary section (unless suppressed) and the first page of detail results (20
records); allows the user to verify that the report shows the type of data they want to see; does not save
the report results for later viewing

• Save and Execute: saves the report specification onto the My Reports tab and runs the report; the report
results are saved to the database and can be recalled from the Report Results tab until they are deleted

Modifying	through	Preview	Mode

The Save and Preview option enables the user to modify the report output layout, including rearranging
columns, changing the detail sort order, and hiding either the summary or detail section. Any changes made in
preview mode can be saved to the report specification, allowing Preview mode to function as an interactive
method of reconfiguring the report output. A message at the top of the report prompts the user to choose
whether to Save Changes or Cancel Changes when they alter the appearance of the report preview.

When a report is executed (as opposed to previewed), the final results cannot be reordered in the on-screen
display of the report. The report can, however, be downloaded as a CSV and manipulated in a spreadsheet

application if desired.

Disable Report
Details Display

Suppresses the detail section of the report output No

Table 87—Report Layout Fields

Property Name Description Required?
234 SailPoint IdentityIQ System Administration Guide

My Reports Tab
Reports	without	Preview	Option

A few of the reports cannot be viewed in preview mode; this is because the data in these reports cannot be polled
without fully executing the report. For example, the Identity Forwarding Report shows the forwarding user for
all Identities who have one specified. Because the forwarding property is not searchable, these cannot be
counted up front and the report cannot be previewed. In some cases, a report can be previewed unless certain
options on it are selected. The Manager Access Review Report, for example, is available for previewing unless the
Show Excluded Items option is selected. This option requires a union that cannot be done with the preview
option, so previewing must be disabled. In these cases, a message is shown indicating that preview is not
available when the user clicks Save and Preview.

My	Reports	Tab

When customized report instances are saved, they appear in the list for the user. From this page, any defined
report instance can be opened, edited to change the instance's specifications, and saved with updates (with or
without running the instance). Instances can also be used to create new report instances and can be run,
scheduled, or deleted through their right-click menu options. The right-click menu options are:

• Save as New Report — Creates a new report instance based on an existing instance. Changes made are
saved as a new report instance, leaving the existing one intact. This is particularly helpful when a report
offers a large number of configuration parameters and a new instance is being created that changes only
a few of the options (filters, sorts, etc.).

• Edit — Edits the existing report instance in place. This is the same as clicking the report instance in the list

• Schedule — Schedules the report instance for future (or repeated) execution.

• Execute — Runs the report instance immediately.

• Delete — Deletes the instance’s configuration from the system.

Scheduled	Reports	Tab

When a user chooses to schedule a report template or instance for execution (right-click -> Schedule), the New
Schedule specification window is displayed. The user must specify a name for the scheduled version of the report
and can optionally specify a description. The report execution is scheduled at the date and time entered by the
user and can be set to run at various frequencies (once, hourly, daily, weekly, monthly, quarterly, or annually).

Reports that have been scheduled for future or repeated execution appear on the Scheduled Reports tab. Once
the scheduled report has executed for the last time (for example, it was originally scheduled to run once in the
future and that time arrived so it ran), it is removed from this list; only future-scheduled report executions are
shown on this page.

Report	Results	Tab

The Report Results tab shows the completion status of all reports that have run and are currently available for
viewing.

Click any report in the list to view its specific results. From the Report Result window, the report can be viewed
on screen, downloaded as a PDF, or downloaded as a CSV file. In the new reporting architecture, the PDF and CSV
forms of the report are created during report execution and saved to the database, making the download of
either format fast and efficient.
SailPoint IdentityIQ System Administration Guide 235

XML Representation of Reports and Instances
XML	Representation	of	Reports	and	Instances

Standard report templates are represented in the IdentityIQ object model as TaskDefinition objects. The XML
representation of these can be seen through the IdentityIQ Debug pages by selecting Task Definition from the
Object Browser list and searching for the report's name in the Name column.

When a report is saved as a customized instance, a new XML object is created in the system to represent its
custom configuration. The instance's XML is far simpler than the template's because it references the template
for most of the report generation details.

Details on these XML representations are explored further in the next chapter: Developing Custom Reports.
236 SailPoint IdentityIQ System Administration Guide

Report as a TaskDefinition
Chapter	18:	Developing	Custom	
Reports

IdentityIQ includes a reporting architecture that greatly simplifies the process of developing custom reports by
allowing the developer to specify the report requirements in a TaskDefinition XML document. The executor uses
IdentityIQ's Forms API to generate the UI form for parameter specification and creates the report output based
on column con figurations specified in the TaskDefinition. The XML specifies the report's Standard Properties
values, the report-specific parameters, the columns that are available for the report, how the data is retrieved
for inclusion on the report, and how the report results are laid out in both the detail and summary sections.

The standard report templates provide some good examples of how to define reports through XML. Excerpts
from these standard templates are used in this chapter to illustrate how to configure custom reports. Many of
the excerpts come from the Uncorrelated Accounts Report, a fairly simple example that can be used to explore
the basics of defining a custom report.

It might be helpful to examine the full XML for these reports to see the tags' usage in context as they are
referenced and excerpted in this document. The reports can be viewed through the debug pages as described
in XML Representation of Reports and Instances, or the entire set of TaskDefinition objects can be exported to
a file through the iiq console and explored in a text editor. The console export command to write the system's
TaskDefinition objects to a file is “export taskDefs.xml TaskDefinition” (where “taskDefs.xml” is the name of the
file to which the objects are exported). Note that the file contains all tasks including reports because no filter
available on the export command to select only a subset of objects of a given type.

Report	as	a	TaskDefinition

In IdentityIQ, a report is essentially executed as a specialized task. The root element of a report is a
<TaskDefinition> element.

<TaskDefinition executor="sailpoint.reporting.LiveReportExecutor" name="Uncorrelated
Accounts Report" progressMode="Percentage" resultAction="Rename" subType="Identity
and User Reports" template="true" type="LiveReport">

The type attribute for the TaskDefinition indicates that this is a report definition, and the executor specifies
which class processes this task definition to run the report. The attributes of the TaskDefinition object and their
purposes are described in the table below.

Table 88—TaskDefinition Type Attributes

Attribute Usage

executor Indicates the class to run the report. In previous version of IdentityIQ, custom reports
required a custom report executor. The new architecture includes the
“sailpoint.reporting.LiveReportExecutor”, which is always specified as the executor
for any report of type “LiveReport,” including custom reports.
SailPoint IdentityIQ System Administration Guide 237

Report as a TaskDefinition
Note: When a report XML document is imported into IdentityIQ, two attributes - created and id - are
generated by the system and saved as part of the TaskDefinition; these should not be specified
in the XML by the report developer.

Elements	within	TaskDefinition

The TaskDefinition contains several nested elements that are used to define important information for the
report. The TaskDefinition always contains an Attributes map and a Signature and usually contains a Description
element and a list of RequiredRights.

name Name of the report template; shown on the Reports list as the report's Name

NOTE: When templates are edited, they must be saved as customized report
instances, and the name value across all report templates and report instances must
be unique. Therefore, the name attribute for a template is not displayed as the
Name field's value on the Edit Report window's Standard Properties page since
instances cannot be saved with this same name. The value entered in the Standard
Properties page's Name field becomes the name value of the TaskDefinition XML for
that instance.

progressMode Specifies how the executor updates progress while the report is being executed; most
reports use Percentage. Possible values are:

None — executor doesn't update progress (same as null, or not specifying)
String — executor periodically updates progressString property of the result during
execution
Percentage — executor periodically updates the progress and percentageComplete
properties of the result during execution

resultAction Specifies the PreviousResultAction (shown on the Standard Properties page) - states
how to manage the results from previous runs of this report when it is executed again.
Possible values are:

Rename — rename old report results by appending a numeric value (for example,
Uncorrelated Accounts Report - 2)
RenameNew — rename new report results by appending a numeric value
Cancel — do not run the report when old report results still exist for the report
(displays an error message indicating that a result from a previous execution of the
report still exists)
Delete — delete old report results when the report is executed again

subType Indicates the report category to which this report belongs (sub-categories within the
Reports and My Reports tabs); can be one of the out-of-the-box subTypes or a custom
subType

template Boolean indicating whether this is a report template (appears on the Reports tab) or
a customized report instance (appears on My Reports tab); new custom reports
should be set up as template=”true”

type All reports using the new reporting architecture, including new custom reports, are of
type “LiveReport”; pre-6.0 reports are of type “Report”

Table 88—TaskDefinition Type Attributes

Attribute Usage
238 SailPoint IdentityIQ System Administration Guide

Report as a TaskDefinition
Attributes	Map

The Attributes map minimally must contain the report definition that described in the next section..

 <Attributes>

 <Map>

 <entry key="report">

 <value>

 <LiveReport title="Uncorrelated Accounts Report">

 …

 </LiveReport>

 </value>

 </entry>

 </Map>

 </Attributes>

Other optional attributes in the attribute map include emailIdentities, reportSortBy, reportGroupBy,
disableSummary, and disableDetail, as described in the Standard Forms for Report Specification section.

Signature

The Signature contains a map of Input attributes that names all of the parameters that can be specified for the
report.

<Signature>

 <Inputs>

 <Argument multi="true" name="correlatedApps" type="Application">

 <Description>rept_input_uncorrelated_ident_report_correlated_apps

 </Description>

 <Prompt>report_input_correlated_apps</Prompt>

 </Argument>

 <Argument name="resultScope" type="Scope">

 <Description>rept_input_result_scope</Description>

 </Argument>

 <Argument multi="true" name="emailIdentities" type="Identity">

 <Description>rept_input_email_recips</Description>

 </Argument>

 </Inputs>

 </Signature>

When a customized report instance with pre-populated parameters is saved, those parameters are saved as a
part of the instance's TaskDefinition in its Attributes map. In this example, a list of Applications and a list of Email
Recipients have been saved for this report instance.
SailPoint IdentityIQ System Administration Guide 239

Report as a TaskDefinition
<TaskDefinition created="1344453735712" id="4028460238edaba4013907aff5200ec9"
modified="1344867911170" name="Uncorrelated Accounts" resultAction="Rename"
subType="Identity and User Reports" type="LiveReport">

 <Attributes>

 <Map>

 <entry key="correlatedApps">

 <value>

 <List>

 <String>4028460238edaba401372767b6eb0d70</String>

 <String>4028460238edaba40138edcfcd1102d2</String>

 </List>

 </value>

 </entry>

 <entry key="disableDetail" value="false"/>

 <entry key="disableSummary" value="false"/>

 <entry key="emailIdentities">

 <value>

 <List>

 <String>4028460238edaba40138edb3571e000d</String>

 </List>

 </value>

 </entry>

 <entry key="reportColumnOrder" value="username, firstName, lastName"/>

 </Map>

 </Attributes>

They are passed from the customized report instance to the associated report template at run-time through the
taskDefinition input arguments specified in the <Signature> for the report.

Every report template's Signature should include input arguments for resultScope and emailIdentities, since
these automatically appear on the Standard Properties window and are available for a user to specify on all
reports. All other input arguments are report-specific and the remainder of the arguments in a custom report is
specific to that report. The list of arguments should match the set of fields available for parameter specification
on the report's Form. Report-specific arguments should include a name and type as attributes on the
<Argument> element. If the argument is multi-valued, it should also include the attribute “multi=”true”.”

Application arguments can include a Description and Prompt element. When a custom form (in a <ReportForm>
element) has been specified, these are ignored and can be omitted. However, if no custom form is specified,
these report-specific input arguments are automatically rendered on a form page (titled Report Options) using
the Prompt value as the field label and the Description value as the tool tip for the field. Both of these values can
be specified as strings or as localizable message keys.

<Argument multi="true" name="correlatedApps" type="Application">

 <Description>rept_input_uncorrelated_ident_report_correlated_apps

 </Description>
240 SailPoint IdentityIQ System Administration Guide

Report Definition
 <Prompt>report_input_correlated_apps</Prompt>

The Account Group Members report is an example of a report that relies on this automatic form rendering for
its report-specific filter options.

Description

The Description element is displayed as the Description for the report on both the Reports and My Reports lists
and on the Edit Report window.

<Description>A detailed view of the uncorrelated user accounts in the

system.</Description>

Required	Rights

The RequiredRights element specifies what system right(s) a user must have to be able to see and execute the
report. The required rights are specified as references to one or more SPRight objects.

<RequiredRights>

 <Reference class="sailpoint.object.SPRight" id="4028460238ed9b8e0138ed9bc59d0054"
name="FullAccessUncorrelatedIdentitiesReport"/>

</RequiredRights>

Report	Definition

The report, including its custom UI form or forms, its query specification, and its results contents and layout, is
specified as a part of the TaskDefinition's attributes map with the attribute key “report”. The value for this
attribute is a <LiveReport> element.

<Attributes>

 <Map>

 <entry key="report">

 <value>

 <LiveReport title="Uncorrelated Accounts Report">

Elements within <LiveReport> determine the report filters that can be specified by a report user, the query used
to retrieve the data for the report, the layout of the report detail grid, and the contents and layout of the report's
summary table and chart. The nested elements within <LiveReport> are:

Table 89—LiveReport Nested Elements

Element Description

ReportForm Determines how the report-specific parameters sections are presented to the user in
the Edit Report window (see ReportForm: Collecting Report-Specific Parameters)

DataSource Specifies how the data for the report details is retrieved from the database (see
DataSource: Retrieving Report Data)

Columns Lists columns available for inclusion in the report detail grid; also used in conjunction
with DataSource to determine which data elements are retrieved in the query (see
Columns/ReportColumnConfig: Report Grid Presentation)
SailPoint IdentityIQ System Administration Guide 241

Report Definition
Each of these elements is explored in detail in the next sections.

ReportForm:	Collecting	Report-Specific	Parameters

Most reports allow users to specify filters that constrain the contents of the generated report. Report-specific
parameters are collected from the report user through a custom form, referenced through a ReportForm element
in the report definition. The form must be specified as a separate XML document and imported into IdentityIQ.
The Form object is described in the Report Forms section at the end of this document.

The ReportForm element references the form like this:

<ReportForm>

<Reference class="sailpoint.object.Form" id="4028460238edaba40138edb36b330010"
name="Uncorrelated Account Report Custom Fields"/>

</ReportForm>

Standard	Forms	for	Report	Specification

The referenced ReportForm is presented to the user in the Edit Report window between the two standard form
pages that are part of every report's specification: Standard Properties and Report Layout. Those two standard
pages are rendered based on a Form object called Report Skeleton using values specified in the report's
TaskDefinition XML. These tables indicate which TaskDefinition elements and attributes determine the values for
fields on the Standard Properties and Report Layout pages.

ReportSummary Describes the Summary section of the report - information included, query to retrieve
it, layout and labels for presentation of it (see ReportSummary: Summary Table)

Chart Defines the graph or chart displayed in the Summary section for the report (see Chart:
Report Graph)

Standard Proper-
ties Field

TaskDefinition Source

Name If editing a customized report instance, <TaskDefinition> name attribute

<TaskDefinition name="Uncorrelated Accounts - Financials" … >

If creating a new report instance based on a template, none (not populated)

Previous Result
Action

<TaskDefinition> resultAction attribute<TaskDefinition
name="Uncorrelated Accounts Report" resultAction="Rename" … >

Description <Description> element

Scope* resultScope entry in Attributes map (value contains ID of selected scope)

<entry key="resultScope"
value="2c9082ee38e813a20138e934eb210146"/>

Table 89—LiveReport Nested Elements

Element Description
242 SailPoint IdentityIQ System Administration Guide

Report Definition
Email Recipients* emailIdentities entry in Attributes map (List contains Identity ID values)

<entry key=”emailIdentities”>
 <value>
 <List>
 <String>4028460238edaba40138edb35653000b</String>
 </List>
 </value>
</entry>

Usually specified in instance XML instead of template XML

Allow
Concurrency

<TaskDefinition> concurrent attribute
(concurrent=”true”)<TaskDefinition concurrent="true"
name="Uncorrelated Accounts Report" … >

Require Signoff* <SignoffConfig> element

 <SignoffConfig>
 <WorkItemConfig created="1344962495866"
escalationStyle="none" id="4028460238edaba401392603057a1464">
 <NotificationEmailTemplateRef><Reference
class="sailpoint.object.EmailTemplate"
id="4028460238ed9b8e0138ed9bd8690106" name="Default Report
Template"/>
 </NotificationEmailTemplateRef>
 <Owners><Reference class="sailpoint.object.Identity"
id="4028460238edaba40138edb36b33016d" name="Aaron.Nichols"/>
 </Owners>
 </WorkItemConfig>
</SignoffConfig>

Report Layout
Field

TaskDefinition Source

Sort By* reportSortBy entry in Attributes map

<entry key="reportSortBy" value="accountGroupDisplayName"/>

Sort Ascending* reportSortAsc entry in attributes map

<entry key="reportSortAsc">
 <value>
 <Boolean>true</Boolean>
 </value>
</entry>

Group By* reportGroupBy entry in Attributes map

<entry key="reportGroupBy" value="application"/>

Standard Proper-
ties Field

TaskDefinition Source
SailPoint IdentityIQ System Administration Guide 243

Report Definition
* These fields are typically specified through the UI for customized instances of reports and saved into the My
Reports instances' attributes map, rather than being specified in the report template XML. However, they can be
specified in the template XML if they apply to the report's default configuration.

Although most reports do include a custom form, it is not required. When one is not specified, the Edit Report
window still displays the Standard Properties and Report Layout pages; the Identity Status Summary report
shows an example of this.

DataSource:	Retrieving	Report	Data

The data shown in the detail section of the report is retrieved through a query that is built based on a
combination of the <DataSource> specification and the <Columns> element. In general, a query is specified in
three parts: Select, From, and Where. The Select portion (the columns list) is specified through the <Columns>
element in the report definition - specifically, the <ReportColumnConfig>s listed within <Columns> element. The
From and Where clauses are specified through the <DataSource> element.

There are three available datasource types: Filter, Java, and HQL. The simplest of these three is the Filter
datasource, though various options available with this datasource type make it quite powerful and flexible. The
other two are available for more complex report data retrieval needs, and Java is likely to be used as the
datasource more often in HQL in those cases. Each of these three datasource types is discussed next.

Filter	DataSource

 A filter datasource executes a projection query to retrieve the data required by the ReportColumnConfigs
specified for the report. It employs the SailPoint Filter object to specify the query. The object whose data is being
queried is specified as the objectType for the DataSource, and the DataSource type is specified as “Filter”.

<DataSource objectType="sailpoint.object.Link" type="Filter">

Note: If the objectType is one of the top-level classes in the IdentityIQ object model (for example, the
set of objects that can be exported from the iiq console or retrieved directly in from the debug
pages), the fully-qualified class name is not required for this attribute. For example, Identity can
be specified here as objectType=”Identity”. However, the fully-qualified name (for example,
sailpoint.object.Identity) is always acceptable, even for the top-level classes, so when in doubt,
specify the fully-qualified name.

This is an example of a filter <DataSource> and its <Columns> specification:

Columns <ReportColumnConfig> header attributes; hidden="true" attribute places column in
left pane - available but not included on report detail by default

<ReportColumnConfig field="accountGroupName"
header="rept_app_account_grp_memb_col_name" property="value"
sortable="true" />

Disable Report
Summary
Display*

disableSummary entry in Attributes map

<entry key="disableSummary" value="true"/>

Disable Report
Detail Display*

disableDetail entry in Attributes map

<entry key="disableDetail" value="true"/>

Report Layout
Field

TaskDefinition Source
244 SailPoint IdentityIQ System Administration Guide

Report Definition
<LiveReport title="Uncorrelated Accounts Report">

 <DataSource objectType="sailpoint.object.Link" type="Filter">

 <QueryParameters>

<Parameter argument="correlatedApps" property="application.id"/>

 <Parameter defaultValue="false" property="identity.correlated"
valueClass="Boolean"/>

 <Parameter defaultValue="false" property="application.authoritative"
valueClass="Boolean"/>

 <Parameter defaultValue="false" property="application.logical"
valueClass="Boolean"/>

 </QueryParameters>

 </DataSource>

 <Columns>

<ReportColumnConfig field="username" header="rept_uncorrelated_ids_grid_username"
property="nativeIdentity" sortable="true" />

<ReportColumnConfig field="firstName" header="rept_uncorrelated_ids_grid_firstName"
property="identity.firstname" sortable="true" />

<ReportColumnConfig field="lastName" header="rept_uncorrelated_ids_grid_lastName"
property="identity.lastname" sortable="true" />

<ReportColumnConfig field="applicationName"
header="rept_uncorrelated_ids_grid_appName" property="application.name"
sortable="true" />

 </Columns>

The search criteria, making up the “where” clause for the search, are specified through one or more of several
query-related elements: Query, QueryParameters, and QueryScript. Joins, sorts and groupBy columns can also
be specified as needed for the query.

QueryParameters

The <QueryParameters> element is used most often. QueryParameters is a map of argument values used to
create the queryOptions object that controls the search. They can be specified based on report arguments,
hard-coded values, or calculated values. QueryParameters contains a list of <Parameter> elements, each of
which defines one of the criteria. These <Parameter>s are "anded" together to make the where clause.

<QueryParameters>

 <Parameter argument="correlatedApps" property="application.id"/>

 <Parameter defaultValue="false" property="identity.correlated"
valueClass="Boolean"/>

 …

</QueryParameters>

There are several different options for specifying parameters in a set of QueryParameters. These options are
described below, illustrated with example Parameters. Most of these examples (except where noted) were taken
SailPoint IdentityIQ System Administration Guide 245

Report Definition
from the Entitlement Owner Access Review Live Report which queries against the
sailpoint.object.CertificationItem object, so all of these parameters relate to that object.

• Referencing a report argument: generally processed as “property = argument”; this parameter looks for
certificationItems with a parent.certification.certificationGroups.id value in the report argument
“certificationGroups”

<Parameter argument="certificationGroups"
property="parent.certification.certificationGroups.id"/>

Note: When arguments are multi-valued, parameters based on them are automatically evaluated
with “in” rather than “equals”.

• Specifying a default value: generally processed as “property = argument or defaultValue (if argument is
null)”; this parameter looks for CertificationItems with a parent.certification.type equal to the report
argument “type”; if none is provided, it defaults to the type “DataOwner”

<Parameter argument="type" defaultValue="DataOwner"
property="parent.certification.type"
valueClass="sailpoint.object.Certification$Type"/>

Note: This example also illustrates usage of the valueClass attribute; this attribute is not necessary for
string or object comparisons but is for other types, such as enumerations (such as Type in this
example), Booleans, Dates, Lists, etc.

• Specifying a hard-coded value: an attribute can also be hard coded to be evaluated against the
defaultValue by not including an argument, as shown in this parameter from the Uncorrelated Accounts
Report. This is processed as “property = defaultValue”, in this case cast as valueClass (not required for
strings).

<Parameter defaultValue=”false” property=”identity.correlated”
valueClass=”boolean”/>

• Specifying different operations: this example illustrates how to create evaluation conditions other than
equals (or in) relationships; operation can be specified as GT, GE, LT, or LE (greater than, greater than or
equal to, less than, less than or equal to)

<Parameter argument="createStartDate" operation="GT"
property="parent.certification.created"/>

• Using a ValueScript: processed as "property = return value from ValueScript"; this parameter performs
processing based on the argument to return a different value that should be used in the criterion; this
example uses a ValueScript to get the application name that corresponds to the applicationID in the
"application" report argument; in a ValueScript, the argument is accessed through the variable name
"value".

<Parameter argument="applications" property="parent.application">
 <ValueScript>
 <Source>
 import sailpoint.object.*;
 import sailpoint.api.ObjectUtil;
 if (value != null){
 return ObjectUtil.convertIdsToNames(context, Application.class,
value);
 }
 return null;
 </Source>
 </ValueScript>
</Parameter>
246 SailPoint IdentityIQ System Administration Guide

Report Definition
Note: Since object references are stored in the customized report instance XML (and passed to report
input arguments) as ID values and many comparisons need to be done based on name, this
convertIdsToNames() utility method is frequently used in ValueScripts in the standard reports.

• Using a QueryScript: used to specify any custom filter and add it into the queryOptions object that is
used in the datasource filter; parameters using a QueryScript do not need to specify a property because
the queryScript overrides any property on the parameter; the argument specified on the parameter can
be accessed within the script through the “value” variable

Group and populations are stored in groupDefinitions objects as a filter, so this example (from the
Identity Forwarding Report) shows how a group or population selected as a report parameter is built into
the datasource filter through a QueryScript.

<Parameter argument="groupDefinitions">
 <QueryScript>
 <Source>
 import sailpoint.object.*;
 import sailpoint.reporting.*;
 Filter f = ReportingLibrary.getGroupDefinitionFilter(context, value,
false);
 if (f!=null) {
 queryOptions.addFilter(f);
 }
 return queryOptions;
 </Source>
 </QueryScript>
</Parameter>

• ValueRule and QueryRule: These two can be specified in place of ValueScript and QueryScript,
respectively, to encapsulate the beanshell of a script into a reusable rule. (These two examples were not
pulled from a standard report; they represent the appropriate syntax if the reports using the ValueScript
and QueryScript specified above had encapsulated those scripts into rules.)

<Parameter argument="applications" property="parent.application">
 <ValueRule>
 <Reference class="sailpoint.object.Rule"
id="4028460238ed9b8e0138ed9beff9090f" name="App Value Rule"/>
 </ValueRule>
</Parameter>

<Parameter argument="groupDefinitions">
 <QueryRule>
 <Reference class="sailpoint.object.Rule"
id="4028460238ed9b8e0138ed9beff90900" name="Group Query Rule"/>
 </QueryRule>
</Parameter>

Query

Another way to specify the filter contents is though a <Query> element. The contents of Query element are
specified as a filter string and can only specify hard-coded criteria with no variable substitution (i.e. report
arguments cannot be specified within a Query element). Query allows the specification of “or” criteria, as shown
in the example below:
SailPoint IdentityIQ System Administration Guide 247

Report Definition
<Query>IdentityEntitlement.name=="assignedRoles" ||
IdentityEntitlement.name=="detectedRoles"</Query>

Query and QueryParameters can be specified for the same DataSource. When both are specified, the Query filter
and the Parameter filters are “anded” together to create the final where clause.

QueryScript

QueryScript creates a filter string through a beanshell script. It is designed so it can append additional criteria,
including those requiring variable substitution, onto a Query element's contents. The script has access to the
string value of the Query element (in a string variable called “query”) and must explicitly append the additional
criteria to it; otherwise, the original query string is overwritten with the QueryScript's return value. The
QueryScript shown below actually comes from an HQL datasource report (the Account Group Membership Totals
Report), but the QueryScript syntax is the same for all datasource types.

<QueryScript>

 <Source>

 import java.util.*;

 List applications = args.get("application.id");

 if (applications != null && !applications.isEmpty()){

 query = query + " and application.id in(:application_id) ";

 }

 return query;

 </Source>

</QueryScript>

Join

When the search must access more than one object to process the filter criteria, a <Join> element is required to
connect the objects properly. One or more Joins can be specified for a single datasource.

For example, the Identity Roles Report displays the roles that each Identity is assigned. Most of the available
filters for the report apply to the Identity object, but the role assignment is recorded on the IdentityEntitlement
object, linked to the Identity object by the Identity ID. The Join element specifies that connection. The property
is the value on the primary object (the DataSource objectType) and the joinProperty specifies the connection
attribute on the second object.

<DataSource objectType="Identity" type="Filter">

 <Join joinProperty="IdentityEntitlement.identity.id" property="id"/>

 <Query>IdentityEntitlement.name=="assignedRoles" ||
IdentityEntitlement.name=="detectedRoles"</Query>

 <QueryParameters>

 <Parameter argument="identities" property="id"/>

 …

 </QueryParameters>

</DataSource>
248 SailPoint IdentityIQ System Administration Guide

Report Definition
OptionsRule	or	OptionsScript

The final elements available on a filter datasource are an OptionsRule or OptionsScript. These can be used to
make modifications to the QueryOptions before the query is run; they can also replace the rest of the query
specification (for example, eliminating the need for a Query, QueryParameters, QueryScript or Join element) by
simply constructing the whole queryOptions in the rule or script.

Only one of these can be specified (the rule overrides the script if both are provided). The OptionsRule or
OptionsScript is passed a SailPoint Context called “context”, a queryOptions called “options” and an argument
map called “args”. Options contains the entire set of query criteria specified in any of the other elements (Query,
QueryScript, QueryParameters, Join) and args contains the TaskDefinition argument map. The rule or script
should append any additional custom queryOptions to options and return it.

 <OptionsScript>

 <Source>

 import java.util.*;

 import sailpoint.object.*;

 //code to add components to queryOptions goes here. e.g.: this would

 // Apply to an Identity objectType and would get only Identities whose

 // Manager is the Identity selected in the manager filter (typically,

 // an optionsScript or optionsRule would be used for a more complex

 Filter myFilter = Filter.eq("manager.id", args.get("manager.id");

 options.addFilter(myFilter);

 return options;

 </Source>

 </OptionsScript>

An OptionsRule is specified as a reference to a Rule object:

<OptionsRule>

 <Reference class="sailpoint.object.Rule" id="4028460238ed9b8e0138ed9beff90900"
name="MyReport Options Rule"/></OptionsRule>

Java	DataSource

A Java datasource is the next most commonly used report datasource type. The XML to specify this is fairly simple
and straightforward; the java class it calls can be as simple or as complex as is required to generate the desired
report contents.

The java datasource class must implement the sailpoint.reporting.datasource.JavaDataSource interface, as
described in the IdentityIQ javadocs. This interface defines all the methods that must be coded. All attributes in
the taskDefinition attribute map (including all input attributes from the Signature) are passed to the Java class in
an arguments map.
SailPoint IdentityIQ System Administration Guide 249

Report Definition
The <DataSource> element in the XML specifies these attributes:

Note: Many of the standard reports were written with a Java Datasource and several examples of this
syntax are available. Most of the standard reports use a QueryParameters element to pass
data to the DataSource, which allowed the report writer to take advantage of the reportHelper
class in the reporting architecture to reuse existing code. However, this is not strictly necessary
and isnot commonly done in the field. Because the entire taskDefinition attributes map,
including all input attributes from the <Signature>) is passed to the java class in an arguments
map, they do not need to be specified as QueryParameters. The class can build the
QueryOptions object needed to retrieve the data without passing the values through
QueryParameters.

HQL	DataSource

An HQL datasource is used in rare circumstances but is available for implementers who need to execute queries
that hit Hibernate directly. This should only be used when the report developer is very knowledgeable about
HQL. The HQL query must be custom written by the report developer.

Like the Filter datasource, the HQL datasource can specify its query using these types of nested elements: Query,
QueryScript, and QueryParameters. The Query and QueryParameters elements function somewhat differently
in an HQL datasource, though, so it is important to understand the way they are processed.

The Account Group Membership Totals Report provides an example of an HQL datasource.

<LiveReport title="Account Group Membership Totals Report">

 <DataSource type="Hql">

 <Query>from ManagedAttribute m where group=true</Query>

 <QueryParameters>

 <Parameter argument="application" property="application_id"/>

 </QueryParameters>

 <QueryScript>

 <Source>

 import java.util.*;

 List applications = args.get("application.id");

 if (applications != null && !applications.isEmpty()){

 query = query + " and application.id in(:application_id) ";

 }

 return query;

DataSource Attribute Usage

dataSourceClass The fully qualified java class name

objectType The primary object against which searches are performed in the java code

type Java (tells the report executor this is a Java Datasource)

defaultSort Optional field; sorts the returned data by the named field if no sort column is
specified through the UI or taskDefinition attributes map
250 SailPoint IdentityIQ System Administration Guide

Report Definition

 </Source>

 </QueryScript>

 </DataSource>

 <Columns>

 <ReportColumnConfig field="accountGroupName"
header="rept_app_account_grp_memb_col_name" property="value" sortable="true"/>

 <ReportColumnConfig field="accountGroupDisplayName"
header="rept_app_account_grp_display_name" property="displayName" sortable="true"/>

 <ReportColumnConfig field="application" header="rept_app_account_grp_memb_app"
property="application.name" sortable="true"/>

 <ReportColumnConfig field="total"
header="rept_app_account_grp_memb_col_members" property="(select count(*) from
IdentityEntitlement ie where ie.value = m.value and ie.application = m.application and
ie.name = m.attribute and ie.aggregationState = 'Connected')"/>

 </Columns>

</LiveReport>

In an HQL datasource, the <Query> element must specify the From clause for the query. The objectType is not
required for an HQL datasource and is ignored if it is provided.

Query

The Query element can also specify some or all of the where clause. As on a Filter DataSource, the Query element
can specify any hard-coded attribute evaluations (i.e. no variable substitution available) and multiple conditions
can be specified with “and” or “or” relationships.

 <Query>from ManagedAttribute m where group=true</Query>

QueryScript

The HQL DataSource <QueryScript> element works just like the Filter Datasource QueryScript. It contains
beanshell that returns a filter string (appending to the Query's string and returning the combined string value).
However, the difference in QueryParameter processing changes the way variables are processed in the script.
The queryScript has access to the task argument map (in its “args” variable), so conditional processing can be
done on those arguments in determining how to build the filter string. However, the contents of those variables
do not need to be built into the actual query string in the queryScript; they can be referenced as variable names
that are passed to the search through QueryParameters. In an HQL datasource, the search is performed based
on the query string built in the query and queryScript elements; the parameters specified as QueryParameters
are passed to the search method along with that query string and are substituted into the query where variable
names are found.

In the example below (from the Account Group Membership Totals Report), the QueryScript examines the
application.id value from the args list and if it is non-null, it appends “and application.id in (:application_id) “ to
the query string. The QueryParameter application_id allows the list of applications from the task argument list
to be substituted for the :application_id variable in that query string when the search is executed.

<QueryParameters>

 <Parameter argument="application" property="application_id"/>

</QueryParameters>
SailPoint IdentityIQ System Administration Guide 251

Report Definition
<QueryScript>

 <Source>

 import java.util.*;

 List applications = args.get("application.id");

 if (applications != null && !applications.isEmpty()){

 // :application_id

 query = query + " and application.id in(:application_id) ";

 }

 return query;

 </Source>

</QueryScript>

QueryParameters

As explained in the QueryScript section above, the QueryParameters in an HQL datasource do not make up filter
components in their own right but instead provide variables for substitution into the query string at the time the
search is executed.

The Parameter elements within the QueryParameters for an HQL datasource is usually only specified with an
argument and a property. The property is the variable name used in the query string and the argument is the
argument map key in which the value to be used in the search is stored. A defaultValue or a valueScript (as
described in the Filter datasource's QueryParameters section) can also be used to provide the value for the
property, if desired. The Parameter's QueryScript option (which returns a QueryOptions object) cannot be used
for an HQL datasource, as it does not provide a value for substitution; HQL datasources do not use a
QueryOptions object in their searches.

ReportColumnConfigs

Just as with the other report types, the ReportColumnConfigs within the report's <Columns> element specify the
attributes to retrieve from the query for display in the report detail grid - the “Select” portion of the query. The
property attributes name the fields to retrieve. The final ReportColumnConfig - the “total” column - in the
Account Group Membership Totals Report shows an example of how to include a sub query in the HQL select
clause. This provides additional levels of flexibility in reflecting data on the report. A calculated field like this
cannot be marked as sortable.

<ReportColumnConfig field="total" header="rept_app_account_grp_memb_col_members"
property="(select count(*) from IdentityEntitlement ie where ie.value = m.value and
ie.application = m.application and ie.name = m.attribute and ie.aggregationState =
'Connected')"/>

Columns/ReportColumnConfig:	Report	Grid	Presentation

The <ReportColumnConfig> elements within the <Columns> element specify which values should be returned
from the query and also define how those values are presented in the report grid.

<Columns>
252 SailPoint IdentityIQ System Administration Guide

Report Definition
<ReportColumnConfig field="username" header="rept_uncorrelated_ids_grid_username"
property="nativeIdentity" sortable="true" />

<ReportColumnConfig field="firstName" header="rept_uncorrelated_ids_grid_firstName"
property="identity.firstname" sortable="true" />

<ReportColumnConfig field="lastName" header="rept_uncorrelated_ids_grid_lastName"
property="identity.lastname" sortable="true" />

<ReportColumnConfig field="applicationName"
header="rept_uncorrelated_ids_grid_appName" property="application.name"
sortable="true" />

 </Columns>

Attributes of ReportColumnConfig include:

Attribute Usage

field Unique name for the report column in this report

header Column label to use in the report body; can be a string or a localizable message key

property Object property from which the data is pulled; this value is used in the query
specification

sortable Boolean value indicating whether the report body should be sortable by this column;
determines whether the column is selectable in the Sort By and Group By fields in the
report specification and whether the report can be sorted by this column in preview
mode

hidden Boolean value indicating whether the column should be omitted from the report grid
by default. Columns marked as hidden (hidden=”true”) appear in the left-side of the
Columns list on the report template's Report Layout page, which makes them
available for inclusion. However, by default they are not included on the report. Any
report instances that were configured to display these fields in the report grid
override this hidden attribute by including the column name in their
reportColumnOrder attribute, causing the column to appear in the report output
regardless of this attribute's value.

ifEmpty Optional property to use if the value of the object property is null or empty;See
Entitlement Owner Access Review Live Report's accountName field for an example:

<ReportColumnConfig field="accountName"
header="rept_data_owner_col_account_name"
ifEmpty="exceptionEntitlements.nativeIdentity"
property="exceptionEntitlements.displayName" sortable="true"
width="110"/>

subQueryKey Used for multi-valued properties to show the values as a list of comma-separated
values instead of multiple rows in the report. Specifying a subQueryKey automatically
renders the column as a subquery that selects the property from the dataSource
objectType matching on the subsQueryKey attribute.An example exists in the
Manager Access Review Live Report's tags field:

<ReportColumnConfig field="tags" header="rept_cert_col_tags"
property="parent.certification.tags.name" subQueryKey="id"
width="110"/>
SailPoint IdentityIQ System Administration Guide 253

Report Definition
In the standard reports, the only time the “hidden” attribute is used on a ReportColumnConfig is when the
column is added to the available set by an ExtendedColumnScript or ExtendedColumnRule (as described in
Extended Column Script or Rule). Generally, if a column is relevant to a report, it is displayed on the report by
default, though it can be removed from the detail grid by a user if they do not wish to see that data on their
customized version of the report.

Note: Strings and Java constants specified in ReportColumnConfig attributes are evaluated first as
message keys for automatic localization; if they do not match a defined message key, the given
string value is used.

sortExpression A set of fields by which the data should be sorted instead of sorting by the selected
column. This attribute allows a column that is not sortable to sort the data by columns
related to the selected column.
See the following example of the permission column on the Account Group
Permissions Access Review Live Report.

<ReportColumnConfig field="permissions"
header="rept_cert_col_account_group_permission"
property="exceptionEntitlements"sortExpression="exceptionApplic
ation,exceptionPermissionTarget,exceptionPermissionRight"
sortable="true" width="110">
 <RenderScript>
 <Source>
 return
sailpoint.api.EntitlementDescriber.summarize(value);
 </Source>
 </RenderScript>
</ReportColumnConfig>

scriptArguments A CSV list of additional properties to pass to a column's RenderScript; see the status
field from the Policy Violation Report for an example. The renderScript then accesses
these values through its scriptArgs variable (as shown in this example).

<ReportColumnConfig field="status"
header="rept_viol_grid_col_status" property="status"
scriptArguments="identity,policyName,constraintName,created"
sortable="true" width="110">
 <RenderScript>
 <Source>
 import sailpoint.object.*;
 …
 String identityId = scriptArgs.get("identity").id;
 …
 </Source>
 </RenderScript>

valueClass Defines the class for the property so it can be displayed appropriately; omitted for
string values

skipLocalization Indicate that the column contains reserved words that should not be translated.
Examples include Names or Account names that could contain reserved keywords.

Attribute Usage
254 SailPoint IdentityIQ System Administration Guide

Report Definition
RenderScript	and	RenderRule

If the value returned from the query needs to be manipulated into a more user-friendly format for display on the
report, this can be accomplished with a RenderScript or RenderRule. A RenderRule is used to encapsulate the
beanshell into a reusable rule - useful when the same manipulation might apply to several reports. A
RenderScript specifies the beanshell inline within a <Source> element. The column's property attribute is passed
into the script in the variable “value”.

This example RenderScript (taken from the Revocation Live Report) displays a different localized message key
depending on whether the action.remediationCompleted flag is true or false so that the report column shows an
easier-to-interpret “Status” instead of a True/False flag.

<ReportColumnConfig field="status"
header="rept_remediation_progress_grid_col_status"
property="action.remediationCompleted" sortable="true" width="110">

 <RenderScript>

 <Source>

 import sailpoint.tools.Message;

 import sailpoint.web.messages.MessageKeys;

 return value == true ? Message.localize(MessageKeys.WORK_ITEM_STATE_FINISHED)
: Message.localize(MessageKeys.WORK_ITEM_STATE_OPEN);

 </Source>

 </RenderScript>

</ReportColumnConfig>

A RenderRule would be specified like this:

Rendered columns are sorted by the property attribute, not by the displayed value, so the order of rows might
not appear alphabetical by the display value. At a minimum, sorting by the column groups all of the rows with
the same column value together. Some properties might not be sortable, such as a property that is an object.
These columns should be marked as sortable="false" even though the displayed value might seem sortable.
Alternatively, a sortExpression can be specified to drive data sorting for these columns.

<ReportColumnConfig field="status"
header="rept_remediation_progress_grid_col_status"
property="action.remediationCompleted" sortable="true" width="110">

 <RenderRule>

 <Reference class="sailpoint.object.Rule" id="4028460238ed9b8e0138ed9bf61300de"
name="Status Message RenderRule"/>

 </RenderRule>

</ReportColumnConfig>

Initialization	Script	or	Rule

The initialization script and rule allow the report developer to customize a report to address an installation's
unique reporting requirements. These scripts/rules are fairly open-ended and should generally be considered
tools for expert-level report creation.

Most often, initialization scripts and rules are used to customize the forms presented to the user for filter
specification. For example, several standard reports use an initialization rule to build dynamic forms to present
SailPoint IdentityIQ System Administration Guide 255

Report Definition
all of the installation's configured Identity attributes - both standard and extended - as filter options on some
forms. Another form customization usage might be to change the set of filters available based on other filter
selections; for example, a report might present a “privileged” account filter option only when the application
selected for the “Application” filter has privileged accounts.

An InitializationScript is specified inline within a <Source> element:

<InitializationScript>

 <Source>

 import sailpoint.object.*;

 import sailpoint.reporting.ReportingLibrary;

 … (initialization code goes here; see rule example below)

 </Source></InitializationScript>

An InitializationRule is specified as a rule reference with the code encapsulated in the named rule:

<InitializationRule>

 <Reference class="sailpoint.object.Rule" id="4028460238ed9b8e0138ed9bf6130000"
name="Identity Report Form Customizer"/>

</InitializationRule>

The rule shown below is used in several of the standard reports (such as the User Detail Report and Identity Roles
Report) to customize a form based on the standard and extended Identity attributes configured for the
installation. Similar rules exist to create custom forms for other reports.

<Rule language="beanshell" type="ReportCustomizer" name="Identity Report Form
Customizer">

 <Description>

 This rule populates a form with fields for the standard and extended identity
attributes.

 </Description>

 <Signature returnType="Map">

 <Inputs>

 <Argument name="locale">

 <Description>

 The current user's locale

 </Description>

 </Argument>

 <Argument name="report">

 <Description>

 The base report

 </Description>

 </Argument>

 </Inputs>

 <Returns>
256 SailPoint IdentityIQ System Administration Guide

Report Definition
 </Returns>

 </Signature>

 <Source>

 <![CDATA[

 import sailpoint.object.*;

 import sailpoint.reporting.ReportingLibrary;

 ObjectConfig identityConfig = ObjectConfig.getObjectConfig(Identity.class);

 // Add standard attributes to the form

 List standardAttributes = new ArrayList();

standardAttributes.add(identityConfig.getObjectAttributeMap().get("firstname"));

 standardAttributes.add(identityConfig.getObjectAttributeMap().get("lastname"));

standardAttributes.add(identityConfig.getObjectAttributeMap().get("displayName"));

 standardAttributes.add(identityConfig.getObjectAttributeMap().get("email"));

 standardAttributes.add(identityConfig.getObjectAttributeMap().get("manager"));

 standardAttributes.add(identityConfig.getObjectAttributeMap().get("inactive"));

 ReportingLibrary.addAttributes(context, report, Identity.class,
standardAttributes, null, "Identity Attributes", locale);

 // add extended attributes to the form (multi-valued and regular)

 List extendedAttrs = new ArrayList();

 for(ObjectAttribute att : identityConfig.getSearchableAttributes()){

 if (!att.isStandard())

 extendedAttrs.add(att);

 }

 for(ObjectAttribute att : identityConfig.getMultiAttributeList()){

 extendedAttrs.add(att);

 }

 ReportingLibrary.addAttributes(context, report, Identity.class, extendedAttrs,
null, "Identity Extended Attributes", locale);
SailPoint IdentityIQ System Administration Guide 257

Report Definition
]]>

</Source>

</Rule>

The methods in the ReportingLibrary (like the one used in this example rule) are documented in the IdentityIQ
Javadocs. The addAttributes method, for example, does the following:

1. Determines the form page where the attributes should be displayed (selects by section name, creates a
new page based on the section name if not found, or selects the first page after Standard Properties if no
section is specified)

2. Adds each attribute as an extended argument to the LiveReport object

3. Adds each attribute to the datasource QueryParameters list as a Parameter

4. Defines a Field object for each attribute and adds it to the Section

These methods can be used in custom report development, but note that it is possible that they could change
in future versions of IdentityIQ, requiring those reports that rely on them to be revisited and modified.
Alternatively, the code to add the attributes to the query parameters and form fields list can be explicitly written
by the datasource developer.

Note: When an initialization script/rule is in place, if any of the functionality depends on the value of
a specific form field, that field must be specified with the postBack attribute set to true
(postBack= "true"); this causes the form to submit and reload when that value changes, and
causes the initialization rule or script to execute again, picking up the new value for the field.

Signature	Extended	Arguments

When the initialization script or rule adds new fields to a report form, the values must be saved for any report
instance for which they were specified, and they must be passed to the report at runtime to be used as report
filters. This is done by adding them as extended arguments in the report definition; from there, they are
automatically stored in the report instance's argument map when the report instance's TaskDefinition is saved.
Even though these arguments do not exist in the report template's signature, they are generated at runtime by
the initialization script and the values from the template's argument map are applied for the report's execution.

Note: This only works for these initialization-generated attributes; all static form fields must be
explicitly specified in the report template's signature for them to be used in the report
generation. Attributes that are included in the report instance's attribute map that do not exist
in the report signature and are not generated by the initialization script or rule is not applied
to the report as filters at runtime.

Extended	Column	Script	or	Rule

An extended column script or rule can be used to add additional columns to a form based on other attributes
selected. For example, the script shown below adds application-attribute columns to the set of available columns
based on the application selected on the form (for example, if an application has a “privileged” or “service”
account attribute, these can be optionally included in the report output when that application is selected as a
filter for the report while they would not be available if a different application that did not have these attributes
were selected). The extendedColumnScript or Rule should return a list of ReportColumnConfig objects; these are
automatically added to the Columns list as “hidden” columns - available for inclusion on the report but not
included in the report detail grid by default.

This script comes from the User Account Attributes Report and is used to add columns to the report output based
on which application is selected as a filter for the report.
258 SailPoint IdentityIQ System Administration Guide

Report Definition
<ExtendedColumnScript>

 <Source>

 import java.util.*;

 import sailpoint.reporting.*;

 import sailpoint.object.*;

 List newCols = new ArrayList();

 Map formValues = form.getFieldValues();

 if (formValues != null && formValues.containsKey("application") &&
formValues.get("application") != null){

 newCols = ReportingLibrary.createApplicationAttributeColumns(context,
formValues.get("application"));

 }

 return newCols;

 </Source>

</ExtendedColumnScript>

An ExtendedColumnRule is specified as a rule reference with the code encapsulated in the named rule:

<ExtendedColumnRule>

 <Reference class="sailpoint.object.Rule" id="4028460238ed9b8e0138ed9bf6130000"
name="Application Extended Column Rule"/>

</ExtendedColumnRule>

Note: When an extended column script/rule is in place, the field on which its functionality depends
must be specified with the postBack attribute set to true (postBack= "true"); this causes the
form to submit and reload when that filter field's data value changes, causing the
ExtendedColumnRule to fire and detect the required condition for displaying the columns.

When columns are added to the report as a result of this rule, they first appear as “hidden” columns - available
for inclusion in the report output but not selected for it. While they are still hidden, they are not saved in the
report instance's XML but are regenerated as hidden columns by this rule every time the report specification is
edited. Once the user adds the columns to the report detail's column list, the columns are saved in the
customized report instance's attributes map in the ReportColumnOrder element, prefixed with the associated
application's ID; if the report is later edited to reference a different application, these columns are automatically
deleted from the report.

Validation	Script	or	Rule

A validation rule or script is used to validate the data entered on a report form. For example, if a value is required
for a specific filter for the report to run, that field can be validated as being non-null by a ValidationRule or
ValidationScript.

A Validation script contains the code inline, wrapped in a <Source> element.
SailPoint IdentityIQ System Administration Guide 259

Report Definition
<ValidationScript>

 <Source>

 import java.util.*;

 import sailpoint.reporting.*;

 import sailpoint.object.*;

 List messages = new ArrayList();

 … (validation code goes here - see rule example below)

 return messages;

 </Source>

</ValidationScript>

A validation Rule is called by reference:

<ValidationRule>

 <Reference class="sailpoint.object.Rule" id="4028460238ed9b8e0138ed9bf61300ff"
name="Privileged Access Report Validation Rule"/>

</ValidationRule>

This validation rule checks the field on the Priviledged Account Attributes form for a null (or empty) value; the
report requires that a value be specified for this field, so an error message is displayed and the report does not
run if this field does not pass this validation. A validation script or rule returns a list of messages; if the form
passes validation, this list should be empty.

<Rule language="beanshell" type="ReportValidator" name="Privileged Access Report
Validation Rule">

 <Description>

 This rule validates the Privileged Access Report Form

 </Description>

 <Signature returnType="java.util.List">

 <Inputs>

 <Argument name="context">

 <Description>

 A sailpoint.api.SailPointContext object that can be used to query the
database if necessary.

 </Description>

 </Argument>

 <Argument name="report">

 <Description>

 The report object

 </Description>

 </Argument>

 <Argument name="form">

 <Description>
260 SailPoint IdentityIQ System Administration Guide

Report Definition
 The submitted sailpoint Form object.

 </Description>

 </Argument>

 </Inputs>

 <Returns>

 <Argument name="messages">

 <Description>

 A list of error messages.

 </Description>

 </Argument>

 </Returns>

 </Signature>

 <Source>

 <![CDATA[

 import java.util.*;

 import sailpoint.object.*;

 import sailpoint.tools.Message;

 List messages = new ArrayList();

 Form.Section section = form.getSection("Priviledged Account Attributes");

 boolean found = false;

 for(FormItem item : section.getItems()){

 Field field = (Field)item;

 if(field.getValue() != null && field.getValue() != "") {

 found = true;

 }

 }

 if (!found)

 messages.add(Message.localize("rept_priv_access_err_no_attr"));

 return messages;

]]>

 </Source>

</Rule>

ReportSummary:	Summary	Table

 The <ReportSummary> element describes the summary table in the summary section of the report.
SailPoint IdentityIQ System Administration Guide 261

Report Definition
The table header is specified in the title attribute.

<ReportSummary title="Uncorrelated Account Details">

The report summary has its own datasource; it does not use the same datasource as the report detail grid. The
datasource for the report summary can be specified as a script or a rule. A script is most commonly used, but the
datasource beanshell can be encapsulated in a rule for reusability if desired. Both are expressed as nested
elements (<DataSourceScript> or <DataSourceRule>).

The DataSourceScript or DataSourceRule for the ReportSummary is passed these parameters:

The summary table is usually built from data retrieved through one or more database queries that are specified
and executed by the script or rule through the context (SailPointContext object), passing it a QueryOptions object
populated with the necessary Filter objects. The example here illustrates how this is done.

<ReportSummary title="Uncorrelated Account Details">

 <DataSourceScript>

 <Source>

 import java.util.*;

 import sailpoint.tools.Util;

 import java.lang.Math;

 import sailpoint.object.*;

 import sailpoint.api.ObjectUtil;

 QueryOptions ops = new QueryOptions();

 ops.addGroupBy("correlated");

 String sources = "";

 // retrieve list of apps in reportArgs argument map; add IDs to

 // filter and names to CSV list to display as summary's "Sources" value

 if (reportArgs.containsKey("correlatedApps")){

 List apps = reportArgs.getList("correlatedApps");

DataSourceScript or
Rule Parameters

Contents/Purpose

Context A SailPoint Context object for executing the search

reportArgs The TaskDefinition argument/attribute map

Report The entire LiveReport report definition

baseHql The from and where clause used in the report detail search if the report
DataSource was an HQL datasource; null if DataSource type was not HQL

baseQueryOptions The QueryOptions (specifying the “where” clause criteria) used in the report detail
search if the report DataSource was a Filter datasource; null if Datasource type
was not Filter
262 SailPoint IdentityIQ System Administration Guide

Report Definition
 if (apps != null){

 ops.addFilter(Filter.in("links.application.id", apps));

 List appNames = ObjectUtil.convertIdsToNames(context, Application.class,
apps);

 sources = Util.listToCsv(appNames);

 }

 }

 List fields = new ArrayList();

 fields.add("correlated");

 fields.add("count(*)");

 int correlated = 0;

 int uncorrelated = 0;

 // get counts per Identity with links on the named applications,

 // subdivided by "correlated" flag

 Iterator results = context.search(Identity.class, ops, fields);

 while(results.hasNext()){

 Object[] row = results.next();

 int count = Util.otoi(row[1]);

 // add counts to correlated or uncorrelated totals based on correlated

 // flag

 if ((Boolean)row[0]){

 correlated += count;

 } else {

 uncorrelated += count;

 }

 }

 // calculate percentage of accounts that are correlated

 float percent = correlated != 0 ? (float)uncorrelated/correlated : 0;

 String percentString = ((int)Math.floor(percent * 100)) + "%";

 // add values to hashmap; these name/value pairs are displayed in the

 // report summary through the XML's LiveReportSummaryValue elements

 Map map = new HashMap();

 map.put("sources", sources);
SailPoint IdentityIQ System Administration Guide 263

Report Definition
 map.put("correlatedIdentities", correlated);

 map.put("uncorrelatedIdentities", uncorrelated);

 map.put("totalIdentities", correlated + uncorrelated);

 map.put("percentCorrelated", percentString);

 return map;

 </Source>

 </DataSourceScript>

A datasource rule would be specified as a nested element (<DataSourceRule>) that contains a rule reference.

<DataSourceRule>

<Reference class="sailpoint.object.Rule" id="4028460238ed9b8e0138ed9beff9090f"
name="UncorrelatedAcct Report Summary Rule"/>

</DataSourceRule>

The datasource script or rule returns a hashMap of values that are used to populate the corresponding
LiveReportSummaryValue elements (based on their name attributes) in the ReportSummary's Values list. The
LiveReportSummaryValue elements each include a unique name and a label attribute. The label can be specified
as a string or a localizable message key and is displayed alongside the value in the Report's summary
section.<ReportSummary title="Uncorrelated Account Details">
 <DataSourceScript>
 <Source>
 …
 Map map = new HashMap();
 map.put("sources", sources);
 map.put("correlatedIdentities", correlated);
 map.put("uncorrelatedIdentities", uncorrelated);
 map.put("totalIdentities", correlated + uncorrelated);
 map.put("percentCorrelated", percentString);

 return map;
 </Source>
 </DataSourceScript>
 <Values>
 <LiveReportSummaryValue label="rept_uncorrelated_ids_grid_label_auth_sources"
name="sources"/>
 <LiveReportSummaryValue label="rept_uncorrelated_ids_summary_correlated"
name="correlatedIdentities"/>
 <LiveReportSummaryValue label="rept_uncorrelated_ids_summary_uncorrelated"
name="uncorrelatedIdentities"/>
 <LiveReportSummaryValue label="rept_uncorrelated_ids_summary_total_ids"
name="totalIdentities"/>
 <LiveReportSummaryValue label="rept_uncorrelated_ids_summary_percent"
name="percentCorrelated"/>
 </Values>
</ReportSummary>
264 SailPoint IdentityIQ System Administration Guide

Report Definition
Chart:	Report	Graph

The Chart element defines the graph that is displayed in the Summary section of the report. The chart can be
represented as a pie chart or as a column or line graph. The chart data is based on the dataset for the report detail
grid (the DataSource element) unless a DataSourceRule or Script is specified for the chart. Commonly, the chart
represents the report body's data, grouped and counted by groupings (i.e. “value” is a count, grouped by the
category and/or series).

Attributes available to define the chart are listed in this table:

In most cases, the chart is created by selecting the value, category, and series fields from the object queried by
the report detail datasource using the exact same filter criteria used by that datasource. The table below
describes how the chart data is retrieved by default (when a dataSourceRule or Script are not specified for the
chart).

Attribute Usage

title Name to display above the chart

type Identifies the type of chart to display (pie, column, or line)

category Defines the X axis in line or column graphs; defines the separate sections of a pie
graph

value Defines the Y axis in line or column graphs; defines the portion (fraction) of the pie
that belongs to each section in a pie graph; often a count

series Defines the separate columns or lines on line or column graphs; ignored for pie charts

groupBy String value of column name (or CSV list of column names) to group data by for
graphing counts

sortBy List of sort columns for data; seldom used since groupBy can specify multiple fields in
a CSV list

limit Limits the number of records examined for the graph; seldom used, unless a similar
limit was imposed on the report detail data, because the graph should generally
represent all of the data in the report detail

script Used to define a datasource for the chart other than the report detail data; script
contains a <Source> element with beanshell content

dataSourceRule Used to define a datasource for the chart other than the report details data; contains
a reference to a rule where the beanshell has been encapsulated

nullSeries Label to display if the series value (x-axis) is null (for example, a null certification
action status means "Open" so that should be the label for the group of certifications
whose action.status is null)

nullCategory Label to display for data group when the category value is null

Report Detail
DataSource Type

Default Chart Query

Filter DataSource's objectType object is queried using the queryOptions built from the
DataSource Query, QueryScript, and QueryParameters elements
SailPoint IdentityIQ System Administration Guide 265

Report Definition
Standard	Chart	Examples

This example pie chart from the Uncorrelated Accounts Report examines the uncorrelated account data pulled
from Links, groups it by application.id and counts the number of uncorrelated accounts on each application. The
graph represents the number of uncorrelated accounts from each application (in this case, one uncorrelated
account was found per application).

<Chart category="application.name" groupBy="application.id"
title="rept_uncorrelated_ids_chart_title" type="pie" value="count(*)"/>

The Manager Access Review Report contains an example of a Column graph that shows the count of certification
items that are open, approved, or revoked (reflected in the action.status attribute), separated by roles and
additional entitlements if applicable (reflected in the type attribute).

<Chart category="type" groupBy="action.status,type" nullSeries="cert_action_open"
series="action.status" title="rept_cert_chart_title" type="column"

value="count(*)"/>

Chart	Script	and	DataSourceRule

The script and dataSourceRule elements can provide the report writer more flexibility in creating charts based
on any data. However, these are generally used only in rare cases in custom reports. The standard reports do
not use a Script or DataSourceRule for their charts.

When either of these is used, the beanshell within them is provided the following parameters:

The code must return a list of maps (List<Map<String, Object>>) with each map representing the value, category,
and series for each component of the chart. If there is no series, the “series” should be recorded as empty string
("") rather than null.

Java Requires the DataSource class to have implemented the getBaseQueryOptions
method; this method should return the QueryOptions used in the report detail query;
also requires that the objectType is specified on the DataSource; retrieves the data for
the chart from the objectType object using the QueryOptions returned by
getBaseQueryOptions()

HQL Uses the same query string employed by the report detail query, which specifies both
the From and the Where clauses, to retrieve the chart's data

DataSourceRule or
Script Parameters

Contents/Purpose

context A SailPoint Context for executing the search

args The TaskDefinition Arguments map

report The entire LiveReport report definition

baseHql The from and where clause used in the report detail search if the report
DataSource was an HQL datasource; null if DataSource type was not HQL

baseQueryOptions The QueryOptions (specifying the “where” clause criteria) used in the report
detail search if the report DataSource was a Filter datasource; null if Datasource
type was not Filter

Report Detail
DataSource Type

Default Chart Query
266 SailPoint IdentityIQ System Administration Guide

Report Forms
For example: {[("value","23"), ("category","ADAM"),("series","")],

 [("value","5"), ("category","Financials"),("series","")],

 [("value","12"), ("category","PeopleSoft"),("series","")]}

The rule or script can add onto the existing criteria from the report detail's DataSource by modifying the baseHql
or baseQueryOptions or it can build the chart data with completely independent criteria. The beanshell is
responsible for specifying the desired columns and search criteria, executing the database search to retrieve the
data, formatting the data into the list of maps, and returning that list.

Report	Forms

The layouts and contents of report-specific form pages are specified within a Form object, referenced by the
report XML in a <ReportForm> element, nested within the <LiveReport> report definition. The Form object must
be created and imported into IdentityIQ separately and is referenced by name.

Each <Section> defines a separate page on the Edit Report window. The page name, shown in the Sections list
and at the top of the form, is specified as the Section's label attribute.

 <Form name="Uncorrelated Accounts Report Custom Fields">
 <Section label="Uncorrelated Accounts Parameters" name="customProperties">
<Field displayName="report_input_correlated_apps" filterString="logical==false
&& authoritative==false"
helpKey="rept_input_uncorrelated_ident_report_correlated_apps"
name="correlatedApps" type="Application" value="ref:correlatedApps"/>
 </Section>
 </Form>

Reports with large numbers of available parameters often include multiple report-specific-parameter pages,
specified as multiple Sections in the Form XML, to group the parameters by category.

 <Form name="Identity Report Options Form Skeleton">
 <Section columns="2" label="rept_priv_access_section_priv_account_attrs"
name="Priviledged Account Attributes">
 <Attributes>
 <Map>
 <entry key="subtitle" value="rept_priv_access_section_instructions"/>
 </Map>
 </Attributes>
 </Section>
 <Section columns="2" label="rept_priv_access_section_account_props" name="Account
Properties">
 <Field columnSpan="1" displayName="rept_identity_roles_field_app"
helpKey="rept_identity_roles_helpN_app" multi="true" name="applications"
type="Application" value="ref:applications"/>
 </Section>
 <Section columns="2" label="rept_priv_access_section_identity_props"
name="Identity Properties"/>
 <Section columns="2" label="rept_priv_access_section_identity_extended_props"
name="Identity Extended Properties"/>
</Form>

Note: Several of the sections in this example XML do not contain any Field definitions. This is because
this report uses an initialization rule to create the form fields for those sections based on
system data. See Initialization Script or Rule for more information on these dynamic forms.
SailPoint IdentityIQ System Administration Guide 267

Report Forms
These are the attributes that can be specified for the Section element.

Fields on each form are specified as nested <Field> elements within each <Section>. Important report-form
attributes on the Field element are described below.

<Field displayName="report_input_correlated_apps"

filterString="logical==false && authoritative==false"
helpKey="rept_input_uncorrelated_ident_report_correlated_apps"
name="correlatedApps" type="Application" value="ref:correlatedApps"/>

Section Attribute Usage

label The label for the form; can be a string or a localizable message key

name Name for the section; must be unique per form; used programmatically but not
displayed on the UI Edit Report window

Columns Used to specify the number of columns in which fields should be displayed; fields are
displayed in the order they are listed within the section, with one field added to each
column in a repeating pattern; for example, in a 2-column layout, 5 fields would be
displayed like this:

Field 1 Field 2
Field 3 Field 4
Field 5

This attribute can be omitted for a one-column display.

Field Attribute Usage

displayName The label for the field. Can be a string or a localizable message key.

helpKey The tool tip for the field. Can be a string or a localizable message key.

name Name for the field and must be unique per form.

type Field type. If this entry is an object, it is automatically created as a suggest, allowing
the user to select from the system's existing objects of that type.

filterString A filter string that restricts the set of objects presented to the user for selection. Only
applies to objects that are presented as suggest boxes.

value A reference to the XML input parameter from which to retrieve the starting / default
value for the field. This is how the saved values in customized report instances are
populated on the form when those instances are viewed in the Edit Report window.
Input parameters to the TaskDefinition XML are specified in its signature, as described
in Report Signature: Passing Data from Saved Report Instances below.

postBack A flag indicating if the form should be submitted when the field value changes.This
causes the form to be reloaded and any initialization actions to be performed. This
flag is important if an initializationScript or Rule or an ExtendedColumnScript or Rule
needs to run to add or remove fields on the form or columns on the report based on
this field value.
268 SailPoint IdentityIQ System Administration Guide

Report Forms
Custom report forms are presented to users in the Edit Report window, along with the Standard Properties page
and the Report Layout page. The Standard Properties and Report Layout pages are standard components of the
report architecture and are automatically presented for any standard or custom report that implements the
LiveReport architecture, whether or not the report references a custom form for report-specific parameters. The
Standard Properties page is always presented first and the Report Layout page is always last; report-specific form
pages are inserted between these two on the Edit Report window.

AllowedValuesDe
finition

This is specified as a nested element to provide a list of values from which the form
user can select. See the User Activity Report for an example (excerpted below).

<Field columnSpan="1" displayName="label_action"
helpKey="rept_input_app_activity_report_action" multi="true"
name="action" type="string" value="ref:action">
 <AllowedValuesDefinition>
 <Script>
 <Source>
 import sailpoint.object.*;

 List items = new ArrayList();
 for(ApplicationActivity.Action action :
ApplicationActivity.Action.values()) {
 List l2 = new ArrayList();
 l2.add(action.toString());
 l2.add(action.getMessageKey());
 items.add(l2);
 }
 return items;
 </Source>
 </Script>
 </AllowedValuesDefinition>

Field Attribute Usage
SailPoint IdentityIQ System Administration Guide 269

Report Forms
270 SailPoint IdentityIQ System Administration Guide

Chapter	19:	Reports	DataSource	
Example

The following sample report uses a Java data source. This sample displays Identities' name, display name, and
manager status and can be filtered by manager (the manager to whom the Identities report) and application
(application(s) on which the Identities have accounts). Both of these filters are multi-selectable.

<TaskDefinition name="Sample Report"
executor="sailpoint.reporting.LiveReportExecutor"

 subType="Identity Reports" resultAction="Rename"

 progressMode="Percentage" template="true" type="LiveReport">

 <Description>Sample report</Description>

 <RequiredRights>

 <Reference class="sailpoint.object.SPRight"

 name="FullAccessBusinessRoleMembershipReport"/>

 </RequiredRights>

 <Attributes>

 <Map>

 <entry key="report">

 <value>

 <LiveReport title="Manager Status Report">

 <DataSource type="Java"

 dataSourceClass="sailpoint.reporting.datasource.SampleDataSource"

 defaultSort="name">

 <QueryParameters>

 <Parameter argument="applications"

 property="links.application.id"/>

 <Parameter argument="managers" property="manager.id"/>

 </QueryParameters>

 </DataSource>

 <Columns>

 <ReportColumnConfig field="name" header="Identity Name" property="name"
sortable="true"/>

 <ReportColumnConfig field="displayName" header="Display Name"
sortable="true"/>

 <ReportColumnConfig field="managerStatus" header="Is Manager"
property="managerStatus" sortable="true"/>

 </Columns>
SailPoint IdentityIQ System Administration Guide 271

 </LiveReport>

 </value>

 </entry>

 </Map>

 </Attributes>

 <Signature>

 <Inputs>

 <Argument multi="true" name="applications" type="Application"/>

 <Argument multi="true" name="managers" type="Identity"/>

 </Inputs>

 </Signature>

</TaskDefinition>

This Java datasource, SampleDataSource.java, builds and runs the query for this report based on the filters the
user specifies.

/* (c) Copyright 2012 SailPoint Technologies, Inc., All Rights Reserved. */

package sailpoint.reporting.datasource;

import net.sf.jasperreports.engine.JRException;

import net.sf.jasperreports.engine.JRField;

import sailpoint.api.sailpointContext;

import sailpoint.object.Attributes;

import sailpoint.object.Filter;

import sailpoint.object.Identity;

import sailpoint.object.LiveReport;

import sailpoint.object.QueryOptions;

import sailpoint.object.Sort;

import sailpoint.task.Monitor;

import sailpoint.tools.GeneralException;

import sailpoint.tools.Util;

import java.util.Arrays;

import java.util.Iterator;

import java.util.List;

public class SampleDataSource implements JavaDataSource {

 private Monitor monitor;
272 SailPoint IdentityIQ System Administration Guide

 private sailpointContext context;

 private QueryOptions baseQueryOptions;

 private Integer startRow;

 private Integer pageSize;

 private Object[] currentRow;

 private Iterator<Object[]> iterator;

 public void initialize(sailpointContext context, LiveReport report,
Attributes<String, Object> arguments, String groupBy, List<Sort> sort) throws
GeneralException {

 this.context = context;

 baseQueryOptions = new QueryOptions();

 if (arguments.containsKey("applications")){

 List<String> applicationIds = arguments.getList("applications");

 baseQueryOptions.add(Filter.in("links.application.id", applicationIds));

 }

 if (arguments.containsKey("managers")){

 List<String> managersIds = arguments.getList("managers");

 baseQueryOptions.add(Filter.in("manager.id", managersIds));

 }

 if (sort != null){

 for(Sort sortItem : sort) {

 baseQueryOptions.addOrdering(sortItem.getField(),
sortItem.isAscending());

 }

 }

 if (groupBy != null)

 baseQueryOptions.setGroupBys(Arrays.asList(groupBy));

 }

 private void prepare() throws GeneralException{
SailPoint IdentityIQ System Administration Guide 273

 QueryOptions ops = new QueryOptions(baseQueryOptions);

 if (startRow != null && startRow > 0){

 ops.setFirstRow(startRow);

 }

 if (pageSize != null && pageSize > 0){

 ops.setResultLimit(pageSize);

 }

 iterator = context.search(Identity.class, ops, Arrays.asList("name",
"displayName", "managerStatus"));

 }

 public boolean next() throws JRException {

 if (iterator == null){

 try {

 prepare();

 } catch (GeneralException e) {

 throw new JRException(e);

 }

 }

 if (iterator.hasNext()){

 currentRow = iterator.next();

 return true;

 }

 return false;

 }

 public Object getFieldValue(String field) throws GeneralException {

 if ("name".equals(field)){

 return currentRow[0];

 } else if ("displayName".equals(field)){

 return currentRow[1];

 } else if ("managerStatus".equals(field)){
274 SailPoint IdentityIQ System Administration Guide

 return currentRow[2];

 } else {

 throw new GeneralException("Unknown column '"+field+"'");

 }

 }

 public void setLimit(int startRow, int pageSize) {

 this.startRow = startRow;

 this.pageSize = pageSize;

 }

 public int getSizeEstimate() throws GeneralException {

 return context.countObjects(Identity.class, baseQueryOptions);

 }

 public void close() {

 }

 public Object getFieldValue(JRField jrField) throws JRException {

 String name = jrField.getName();

 try {

 return getFieldValue(name);

 } catch (GeneralException e) {

 throw new JRException(e);

 }

 }

 public void setMonitor(Monitor monitor) {

 this.monitor = monitor;

 }

 public QueryOptions getBaseQueryOptions() {

 return baseQueryOptions;

 }

 /**
SailPoint IdentityIQ System Administration Guide 275

 * Unused since this is not an hql report.

 */

 public String getBaseHql() {

 return null;

 }

}

276 SailPoint IdentityIQ System Administration Guide

Managing Passwords
This section contains the following information:

• “Introduction to Password Management” on page 279

• “Application Password Management” on page 281

• “IdentityIQ Password Management” on page 291

• “Application-Specific Password Management Requirements” on page 297
SailPoint IdentityIQ System Administration Guide 277

278 SailPoint IdentityIQ System Administration Guide

Chapter	20:	Introduction	to	
Password	Management

IdentityIQ supports multiple login configurations, including single sign-on, pass-through authentication, and
validation against IdentityIQ’s internally stored passwords. Pass-through authentication and internal passwords
can be managed through the IdentityIQ user interface.

IdentityIQ’s internal set of passwords are governed by the IdentityIQ password policy. These internal passwords
are always available as a fallback login validation for IdentityIQ, even when other authentication methods are
used; either the user or an administrator can reset an internal password through IdentityIQ’s change password
options.

When pass-through authentication is used, IdentityIQ enables the specification of challenge questions that can
enable users to reset their own forgotten passwords, once they authenticate to IdentityIQ by correctly answering
those questions. New passwords entered through this forgot password feature are validated against the
pass-through authentication application’s password policy and are reset on that application directly.

This section is divided into three chapters, each covering key subjects related to Password Management:

• "Application Password Management" on page 281

• "IdentityIQ Password Management" on page 291

• "Application-Specific Password Management Requirements" on page 297
SailPoint IdentityIQ System Administration Guide 279

280 SailPoint IdentityIQ System Administration Guide

Enabling Password Management in IdentityIQ
Chapter	21:	Application	Password	
Management

IdentityIQ can use the Lifecycle Manager product to manage passwords across many of the applications with
which it is associated. It can enforce password policies specified for the applications, which can include
requirements for length, complexity, unique history, and mandatory reset.

To manage passwords across application, you must configure both IdentityIQ and the applications on which you
are going to manage passwords. Password management is further governed by the capabilities of the connector
in use for each application and some applications have specific configurations requirements that go beyond the
basic password management requirements.

Enabling	Password	Management	in	IdentityIQ

The ability to manage passwords in other applications through IdentityIQ is controlled by the Lifecycle Manager
Configuration settings for the installation. To configure Lifecycle Manager, click the gear icon and select Lifecycle
Manager Configuration.

In Lifecycle manager, request permissions are configurable for Identities in four categories:

• Self Service: specifies the types of requests that can be made by an Identity on their own behalf

• Managers: specifies the types of requests that can be made for other Identities (and the set of Identities
for which those requests can be made) when the requester is a Manager (isManagerflag = True)

• Help Desk Personnel: specifies the types of requests that can be made for other Identities (and the set
of Identities for which those requests can be made) when the requester has the Help Desk Personnel
Capability in IdentityIQ

• All Users: Specifies the types of requests that can be made for other Identities (and the set of Identities
for which those requests can be made) by any user

The password management function can be turned on for any or all of these categories by selecting the Manage
Passwords Lifecycle Action under each request-permission category.

Defining	Special	Characters	Available	Password	Use

IdentityIQ enables you to define the special characters that can be used in passwords throughout your
deployment of the product. A default set of special characters are included in the System Configuration object.
SailPoint IdentityIQ System Administration Guide 281

Configuring Applications for Password Management
The special characters enabled for use in passwords are listed in the passwordSpecialCharacters key. To edit
these items:

• Click the Gear icon in the navigation menu, go to the Global Settings -> IdentityIQ Configuration ->
Password tab -> Password Policy area, and click Define Character Type.
 Or

• Go to the debug page of the IdentityIQ user interface and select object type Configuration from the
drop-down menu. Select the SystemConfiguration object and edit the value for the
passwordSpecialCharacters entry key. For example:

<entry key="passwordSpecialCharacters" value="~!@#$%^*_+-={}\\][:;?,."/>

Configuring	Applications	for	Password	Management

Password management is further governed by the capabilities of the connector in use for each application.
Passwords can be managed through IdentityIQ for any application using a read-write connector that has the
PASSWORD feature enabled; this feature is enabled when the features String attribute on the application contain
the word “PASSWORD”. The application definition, including its featuresString attribute, for each application is
viewable in the XML representation of the Application object (accessible from the debug pages or from the iiq
console).

<Application connector=”sailpoint.connector.LDAPConnector” created=”1334252935835”
featuresString=”AUTHENTICATE, PROVISIONING, ENABLE, PASSWORD, MANAGER_LOOKUP,
SEARCH, ACCOUNT_ONLY_REQUEST" id="4028833636890f860136a7ac1a6c054f"
modified="1335456303423" name="ADAM Direct" profileClass=”“ type=”ADAM - Direct">

Note: Not all read-write connectors have the PASSWORD feature enabled. The Connector Registry
entry for each connector includes all the valid features for that connector in its featuresString
attribute. Specifying PASSWORD in the featuresString of an application to which the feature
does not apply does not successfully enable password management for the application. To view
the Connector Registry entries from the debug pages, select Configuration from the Objects list
and click List. Then click ConnectorRegistry to view the connector registry XML.

Configuring	Password	Policies	for	an	Application

Password policies specify the password requirements for an application. These can include minimum and
maximum lengths for the password and requirements for its makeup (number of letters, digits, uppercase
letters, lowercase letters, special characters). The policies can also restrict password choice based on matches
in password history, the password dictionary, the Identity's list of attributes, and the Identity's account
attributes.

A separate password policy can be defined for each application in IdentityIQ. In fact, multiple policies can be
defined for each application.

Defining	a	Password	Policy

Complete these steps to define an application's password policy:

1. Open the application definition. From the navigation menu, go to Applications -> Application Definition ->
[select application from list or click Add New Application to create a new application]. Then click the Pass-
word Policy tab.
282 SailPoint IdentityIQ System Administration Guide

Configuring Password Policies for an Application
2. Click Create New Policy to create a new password policy, click a policy name in the list to edit an existing
policy, or click Add Existing Policy to select a predefined password policy from the drop-down list, see “Pol-
icy Re-Use” on page 284.

3. Name the policy (required) and provide a brief description. Specify any required password characteristics.
Most of these characteristics are self-explanatory; these few are further explained here since they might
be unclear:

- Password history length: specifies number of previous passwords in password history to check
against for uniqueness (prevents re-use of a password over the specified number of password
changes); the current password is included in the count

- Validate passwords against the password dictionary: compares password to an internally-stored,
implementation-specific password dictionary, ensuring that the password is not, and does not
contain, any word in that dictionary (see Password Dictionary below)

- Validate the password against the identities list of attributes: ensures that values stored as Identity
attributes (for example, last name, department, office number, region) are not used as the password

- Validate the password against the identity’s account attributes: prevents values stored on the
application account from being used as the password

Note: The password history, if a Password history length value is specified, it is stored as a
<PasswordHistory> element on the <Link> (account representation) within the Identity object.
It is stored as a comma separated values list of encrypted passwords. The number of passwords
stored is determined by the Password history length value specified. New passwords set for the
account cannot match any password in the list.

4. Select an Identity Filter if this policy should only apply to certain sets of Identities. The default Identity fil-
ter is All, which means the policy applies to all Identities. Other options are:

- Match List: specify Identity Attributes or Application Attributes/Permissions by which Identities can
be matched for this policy to apply (for example, Identity Attribute: Department = Accounting)

- Filter: specify a filter (as CompoundFilter XML) that can be used to identify Identities to which this
policy applies

- Script: specify a segment of beanshell that selects Identities that should use this policy

- Rule: specify a rule (type: IdentitySelector) that returns a list of Identities to which this policy should
apply

- Population: apply this filter to the Identities in an existing IdentityIQ Population

Note: The first policy defined should be the default policy that applies to all users. This policy serves
as the “fallback” policy if none of the more restrictive policy Identity Filters apply to the Identity
whose password is being validated. If more than one policy is specified with Identity Filter = All,
only the last one created is applied in any Identity password validation. This is further explained
in the Password Validation Process section.

Password	Dictionary

The password dictionary is a set of words (or character strings) that have been deemed impermissible as
passwords or password contents for the specific IdentityIQ installation. It is populated by importing a Dictionary
XML object through the iiq console or the Import from File option under System Setup. The XML looks like this,
and the prohibited words in the password dictionary are included as <DictionaryTerm> elements:

<?xml version='1.0' encoding='UTF-8'?>

<!DOCTYPE sailpoint PUBLIC "sailpoint.dtd" "sailpoint.dtd">
SailPoint IdentityIQ System Administration Guide 283

Configuring Password Policies for an Application

 <sailpoint>

 <ImportAction name='merge'>

 <Dictionary name="PasswordDictionary">

 <Terms>

 <DictionaryTerm value="password"/>

 <DictionaryTerm value="identity"/>

 </Terms>

 </Dictionary>

 </ImportAction>

 </sailpoint>

Include the <ImportAction name='merge'> element to add new terms to the dictionary without overwriting the
existing dictionary entries. Omit this element to overwrite the dictionary with a new set of terms.

If removing terms or replacing the entire dictionary, then delete the dictionary object first using the console or
debug pages. The terminator will handle removing both the Dictionary and the dictionaryTerms.

Note: Terms included in this dictionary are prohibited even as any part of a password when password
dictionary validation is enforced. For example, if the term “rock” were included in the password
dictionary, these passwords would all be prohibited: rocketlauncher, sprocket, Sh@mrock125.
Additionally, validation against the password dictionary is case insensitive, so RocKeTTe would

also be prohibited in this case.

Policy	Re-Use

Previously created policies (for example, ones created for one application but applicable to more than one
application) can be added to an application instead of recreating the same policy over and over. For example, if
super-user accounts on all applications have the same password requirements, the super-user policy could be
created once and copied to all applications.

To copy an existing policy from one application to another:

1. On the Password Policy tab for the target application, click Add Existing Policy.

2. Select the desired password policy by name. The password policy characteristics are displayed for review.

3. Configure the Identity Filter to apply the policy to the appropriate set of Identities for this application. Fil-
ters might differ from one application to another (for example, different application attributes or permis-
sions or different Identities attributes can designate a super-user on one application but not on another),
so they do not carry over between applications in this policy sharing feature.

4. Click Save to save the filter on this application.

The policy now appears in the application's Password Policies list with a warning icon. Hovering over this icon
displays the message “Be careful editing this policy, it is also used by another application.” Changes made to the
requirements in a shared policy affect all applications using that policy. Changes made to the Identity Filter on
these shared policies only affect the individual application's use of the policy.
284 SailPoint IdentityIQ System Administration Guide

Application Change Password Provisioning Policy
Password	Validation	Process

In many cases, the password policy for an application applies to all users, so there is only one password policy
per application. Sometimes, more than one policy is created for a single application to specify different password
requirements for different levels or types of user access. In the password management process, when a user's
password is being changed, the policy checker scans all of the policies that apply to the identity and creates one
super-policy that covers all of the restrictions for that user.

If no password policy is defined for the application, no password policy is enforced and any password entered
for a password change is accepted by IdentityIQ and passed to the application to be set as the account's new
password.

Application	Change	Password	Provisioning	Policy

Some applications support more than one password type. For example, Lotus Notes has three different types of
passwords that need to be managed, a vault password, a file password, and an internet password. IdentityIQ can
be used to configure those applications so that all password types can be managed through a change password
provisioning policy.

The change password provisioning policy template is loaded when a change password request is created through
Lifecycle Manager. This template is only loaded for change password. The other password management requests
are not affected.

The Change Password provision policy is configured on the Provisioning Policy tab of the Application
Configuration page.

Requesting	a	Password	Change

Password changes, self-service or for others, are requested through the Manage Access QuickLink for Lifecycle
Manager. When the request is submitted, it is immediately processed through a workflow, by default, the LCM
Manage Passwords workflow.

By default, application password requests (forgot, expired, or change), either self-service or for others, invoke
the LCM Manage Passwords workflow. This workflow's default configuration requires no application-owner or
manager approvals on a password change. It creates and processes a provisioning plan that contains the
requested password changes and then notifies the user by email when the change is complete.

If the change request is for an account whose application is configured with a Change Password provisioning
policy, additional information is required before the change occurs. See “Application Change Password
Provisioning Policy” on page 285.

Self-Service	Requests

When a user wants to, and is authorized to, change their own password on an application, they must complete
these steps in IdentityIQ:

1. From the Manage Access Quicklink, click Change Passwords and select For Me.

2. Select the application account or accounts for which the password is being changed.
SailPoint IdentityIQ System Administration Guide 285

Requesting a Password Change
Note: Hover over the help text icon () by the application name to review its password policy
requirements.

3. Enter the Current Password for each account being updated. Enter the new password twice: once in New
Password and once in Confirm Password.
If more than one application's password is being changed at a time and the new passwords should all be
identical, select Synchronize passwords for selected accounts. Each of the selected accounts is then prompt
for the Current Password for that account but the New Password and Confirm Password boxes are
displayed only once at the top of the window and apply to all applications whose passwords are being
changed.

4. Click Submit at the bottom of the window to submit all password changes.

Note: If the entered passwords do not match or if the password does not meet the requirements of
all of the application's password policies, an error message is displayed on this window and the
password values must be re-entered before the requested changes are successfully submitted.

5. A summary of the requested changes is displayed on the next window. Review this summary and click Sub-
mit (or click Cancel or Make Additional Changes if the changes noted in the summary do not match the
desired changes). Individual request line items can be deleted from this window by clicking the x icon on
any row. Comments can be added to any of the change records by clicking the icon in the Add Comments
column. These comments are stored on the IdentityRequest object, which can be accessed later through
the My Work > Access Requests menu option.

Note: The password reset only occurs if all requested changes can be made successfully. If the
password reset fails, an error message is displayed at the top of the page indicating the failure.

Requests	for	Others

As described in Enabling Password Management in IdentityIQ, the sets of Identities for which a user can make
requests, as well as the types of requests available to each user, depend on the Lifecycle Manager Configuration
settings that apply to that Identity. The rest of this section assumes that the logged-in user is authorized to make
password requests for the Identity needing a password change.

Complete these steps to reset another user's password on an external application through IdentityIQ:

1. From the Manage Access Quicklink, click Change Passwords and select For Others.

2. Select the Identity for whom the password change is required.

3. Specify the password change method:

- Set passwords for the selected accounts: enter new passwords manually on this window

- Synchronize passwords for selected accounts: apply a single manually entered password to all of
the selected accounts (rather than entering a separate new password for each selected account)

- Generate passwords for the selected accounts: allow system to generate new passwords

Note: When passwords are reset for another user, the system automatically sets a flag that tells the
external application to require a password reset upon initial login by the user, so whether the
password is manually set or generated, the user is prompted to change it when they first sign
in to the target application.

Note: The Generate passwords for the selected accounts option can be turned on or off from the
Lifecycle Manager Configuration window, Additional Options tab. Select or clear the Enable
password auto-generation when requesting for others box in the Manage Password Options
section.
286 SailPoint IdentityIQ System Administration Guide

Requesting a Password Change
4. Select the application account or accounts for which the password is being changed.

5. Enter the new password twice - once in New Password and once in Confirm Password - if prompted.

- If Generate passwords for the selected accounts is selected, the system does not prompt for a new
password.

- If Synchronize passwords for the selected accounts is selected, the password prompting occurs one
time at the top of the window above the accounts list.

- Otherwise, each selected application account has a set of password prompt boxes.

6. Click Submit at the bottom of the window to submit all password changes.

Note: If the entered passwords do not match or if the password does not meet the requirements of
the application's password policy, an error message is displayed on this window and the
password values must be reentered before the requested changes can be successfully be
submitted.

7. A summary of the requested changes is displayed on the next window. If the password is a generated pass-
word, the password is displayed in the Password column. If it was manually entered, it is represented with
***** in that column. Review this summary and click Submit (or click Cancel or Make Additional Changes
if the changes noted in the summary do not match the desired changes). Individual line items can be
deleted from this window by clicking the icon on any row. Comments can be added to any of the change
records by clicking the icon in the Add Comments column. These comments are stored on the IdentityRe-
quest object, which can be accessed later through the access request pages.

Note: The password reset only occurs if all requested changes can be made successfully. If the
password reset fails, an error message is displayed at the top of the page indicating the failure.

LCM	Manage	Passwords	Workflow

By default, application password requests (forgot, expired, or change), either self-service or for others, invoke
the LCM Manage Passwords workflow. This workflow's default configuration requires no application-owner or
manager approvals on a password change. It creates and processes a provisioning plan that contains the
requested password changes and then notifies the user by email when the change is complete.

If the change request is for an account whose application is configured with a Change Password provisioning
policy, additional information is required before the change occurs.

The default email template for password change notification sends a summary of the change request. This
includes the requester, some representation of the new password, and any comments entered on the request
(from the Summary of Requests window). If the password was system generated, that password is included in
the email body. If it was a manually entered password, it is displayed in the email body as ******; in the case of
request-for-others password resets, the new password value must be verbally, or otherwise, communicated to
the user by the person who made the change.

To direct IdentityIQ to use a different, custom workflow for password management, create a workflow of type
LCMProvisioning and select it as the Manage Passwords business process on the Lifecycle Manager Configuration
window's Business Processes tab.
SailPoint IdentityIQ System Administration Guide 287

Passwords on New Account Requests
Passwords	on	New	Account	Requests

New account requests often contain password values. If you want to use default account-creation passwords
that are different from the standard password policy for that application, IdentityIQ uses a configuration setting
to govern the enforcement of password policies on account creation.

To enforce password policies on account creation, complete these steps:

• On the Lifecycle Manager Configuration page located under the gear icon menu, Additional Options
tab, select the Check Password Policy rule as the Password Validation Rule. Check Password Policy is a
rule that is supplied with Lifecycle Manager that validates the password field on an application's
provisioning policy against the application's password policy. To write a custom rule, click the button to
the right of that box.

• Define a Create provisioning policy for the application that includes a password field. This field name
must end with password, must be of type Secret, and must not have its own validation rule specified
for the Password Validation Rule to be applied. The connector maps this password provisioning policy
field to the application's password field as the account is created.

When the provisioning policy form is presented for completion, by default to the application owner, the value
entered in the Password field on the form is validated against the application's provisioning policy.

Troubleshooting	Password	Management	with	
Provisioning	Plan	Debugging

Password changes are managed as provisioning activities, creating a provisioning plan that reflects the password
change as an account modification request. Problems encountered with password management during the early
set-up phases can be more easily diagnosed by turning on logging of the provisioning plan for individual
applications as a debugging tool. The provisioning plan shows the actions IdentityIQ intends to perform on the
account.

To turn on logging, add this XML block to the desired application's XML through the IdentityIQ Debug pages.

 <!-- Inserting a provisioning configuration to support dumping the
 provisioning plan out to the log file during every execution. -->
 <!-- The deleteToDisable flag prevents account deletion activities, changing them
 to disable account requests instead of delete -->
 <ProvisioningConfig deleteToDisable="true">
 <PlanInitializerScript>
 <Source>
 System.out.println("DEBUG: ProvisioningPlan: \n" + plan.toXml());
 </Source>
 </PlanInitializerScript>
 </ProvisioningConfig>

This writes the provisioning plan to standard out (appearing as shown below). Note that the password is written
in the provisioning plan in plain text, so this ProvisioningConfig should not be left in the Application XML in a
production environment.

DEBUG: ProvisioningPlan:

<?xml version='1.0' encoding='UTF-8'?>

<!DOCTYPE ProvisioningPlan PUBLIC "sailpoint.dtd" "sailpoint.dtd">

<ProvisioningPlan targetIntegration="ADAM">
288 SailPoint IdentityIQ System Administration Guide

Troubleshooting Password Management with Provisioning
Plan Debugging
 <AccountRequest application="ADAM"
nativeIdentity="CN=Adam.Kennedy,DC=sailpoint,DC=com" op="Modify">

 <AttributeRequest name="password" op="Set" value="test123">

 <Attributes>

 <Map>

 <entry key="preExpire">

 <value>

 <Boolean>true</Boolean>

 </value>

 </entry>

 </Map>

 </Attributes>

 </AttributeRequest>

 </AccountRequest>

 <Attributes>

 <Map>

 <entry key="identityRequestId" value="0000000028"/>

 <entry key="requester" value="admin"/>

 <entry key="source" value="LCM"/>

 </Map>

 </Attributes>

 <Requesters>

 <Reference class="sailpoint.object.Identity"
id="2c901c1e34aa96a70134aa96e40200ba" name="admin"/>

 </Requesters>

</ProvisioningPlan>
SailPoint IdentityIQ System Administration Guide 289

Troubleshooting Password Management with Provisioning
Plan Debugging
290 SailPoint IdentityIQ System Administration Guide

IdentityIQ Password Configuration
Chapter	22:	IdentityIQ	Password	
Management

IdentityIQ supports multiple login configurations, including single sign-on, pass-through authentication, and
validation against IdentityIQ's internally stored passwords. Pass-through authentication and internal passwords
can be managed through the IdentityIQ user interface.

IdentityIQ's internal set of passwords are governed by the IdentityIQ password policy. These internal passwords
are always available as a fallback login validation for IdentityIQ, even when other authentication methods are
used. A user or an administrator can reset an internal password through IdentityIQ's change password options.

When pass-through authentication is used, IdentityIQ enables the specification of challenge questions that can
enable users to reset their own forgotten passwords, once they authenticate to IdentityIQ by correctly answering
those questions. New passwords entered through this forgot password feature are validated against the
pass-through authentication application's password policy and are reset on that application directly.

For information, refer to the SailPoint IdentityIQ System Configuration Guide.

IdentityIQ	Password	Configuration

IdentityIQ supports one-way hashing for following identity secrets:

• IdentityIQ password

• IdentityIQ password history

• IdentityIQ security question answers

• Application password history for external applications, such as Active Directory.

Note: Hashing support for application password history is enabled even if an application does not
have a password policy.

To enable one-way hashing of secret values, click the Gear icon and select Global Settings -> IdentityIQ
Configuration -> Passwords tab -> Configuration.

IdentityIQ	Password	Policy

The password policy for the IdentityIQ internally stored passwords is set in the System Setup configuration pages.
Click the Gear icon and select Global Settings -> IdentityIQ Configuration -> Passwords tab -> Password Policy.
SailPoint IdentityIQ System Administration Guide 291

Defining Special Characters for Password Use
Most of the setting options are the same as the password policy options for application passwords. Unique
settings available only for the IdentityIQ password policy are:

• Define Character Types: used to define allowable character types: Digits, Uppercase Characters,
Lowercase or Non-English Characters, Special Characters. All characters are allowed if these fields are
empty.

• Days until expiration for manually set passwords: used when a user resets their own password through
the Edit Preferences window. This option sets the password expiration date by adding the specified
number of days to the current date. The user is required to reset their password the first time they log
into IdentityIQ on or after that expiration date.

• Days until expiration for generated passwords: used when an administrator resets a user's password
through the Identity Cube's Attributes page. This option sets the password expiration date by adding the
specified number of days to the current date. The user is required to reset their password the first time
they log into IdentityIQ on or after that expiration date.

• Minimum Hours between password changes: specifies the amount of time (in hours) that must elapse
before a user can reset their own IdentityIQ login password after they have reset it once. This does not
prevent an administrator from resetting the user's password and does not prevent the user from
resetting the password again immediately after it was reset by an administrator.

• Require users to enter their current password when setting a new password: enables a user to change
their IdentityIQ password only if they enter the correct current password for the account.

Additionally, the following password policy options might not be immediately clear to a user, so they are
described more fully here:

• Password history length: specifies number of previous passwords in password history to check against
for uniqueness (prevents re-use of a password over the specified number of password changes)

• Validate passwords against the password dictionary: validates new IdentityIQ passwords against the
password dictionary (see “Password Dictionary” on page 283)

• Validate password against the identity’s list of attributes: ensures that values stored as Identity
attributes (last name, department, office number, region, etc.) are not used as the password

The Validate passwords against the Identity's account attributes option found on the application password
policies does not apply to the IdentityIQ password policy. Those attributes are specific to each application and
present a security risk when used in the login credentials for that specific application, but they do not pose the
same risk for the IdentityIQ login.

Note: The password history, if a Password history length value is specified, is stored as a
<PasswordHistory> element on the Identity object. It is stored as a comma separated values list
of encrypted passwords. The number of passwords stored is determined by the value set for the
Password history length. IdentityIQ prevents the setting of a new IdentityIQ password for the
user that matches any password in the list.

Defining	Special	Characters	for	Password	Use

IdentityIQ enables you to define the special characters that can be used in passwords throughout your
deployment of the product. A default set of special characters are included in the System Configuration object
To edit these special characters, go to the Gear icon and select Global Settings -> IdentityIQ Configuration ->
Passwords tab and click the Define Character Types button. Alternatively, you can go to the debug page of the
IdentityIQ user interface. The special characters enabled for use in passwords are listed in the
passwordSpecialCharaters key.
292 SailPoint IdentityIQ System Administration Guide

Resetting IdentityIQ Internal Passwords
Resetting	IdentityIQ	Internal	Passwords

Each user's internally-stored password in IdentityIQ can be updated by that user on the Edit Preferences window.
A user with rights to edit Identities' passwords (Password Administrator, Identity Administrator, etc.) can change
passwords for other users as well through the Identity Cube.

Note: Passwords set through these options are the internally stored passwords for IdentityIQ. They
are used as the primary authentication resource when the default login configuration is used.
If pass-through authentication is enabled, the internal password (if one exists) is used to
authenticate a user to IdentityIQ if authentication against the pass-through authentication
resource fails. This password reset is not pushed out to any external resource.

Self-Service	Password	Reset

To change your own IdentityIQ password:

1. From the navigation menu bar, click the user name and select Preferences.

2. Click the Password tab to display the section in which the new password can be entered.

3. If the IdentityIQ password policy requires that the current password be entered, the Current Password box
appears, and that value must be entered for the password change to be allowed.

4. Enter the new password twice, once in New Password and once in Confirm New Password. The password
must meet the requirements of the IdentityIQ password policy.

5. Click Save at the bottom of the window to save the password changes.

Password	Resets	for	Others

Note: To use this feature, you must have authority to reset passwords for other users.

To change an IdentityIQ password for another user:

1. From the navigation menu bar, click Identities -> Identity Warehouse -> [select Identity name]. Then click
Change Password to display the password reset fields.

2. Enter the new password twice (once in Password and once in Confirm Password). The password must
meet the requirements of the IdentityIQ password policy.

3. If this is a temporary password that the user should be prompted to reset, select Require the user to
change their password the next time that they log in.

4. Click Save to save the password change. Password changes for others do not require the user to enter the
current password even if that requirement exists for self-service password changes.

Password	Expiration	Resets

When a password expiration date is set for the IdentityIQ password, the system forces the user to change their
password the first time they try to sign in, on or after the specified date.

First the user is informed that the password has expired. Click Close to acknowledge and dismiss this message.

Then the user is prompted to enter a new IdentityIQ password. Enter the new password twice (in New Password
and Confirm Password) and click Change.
SailPoint IdentityIQ System Administration Guide 293

Password Management with Pass-Through Authentication
Password	Management	with	Pass-Through	
Authentication	

Note: This feature is available when pass-through authentication is in use and can only be used to
reset the password for a pass-through-authentication application.

When IdentityIQ is configured for pass-through authentication, the Forgot Password option can be turned on to
enable a user to reset their password in the authenticating application. A user can then authenticate to IdentityIQ
through security questions when they are unable to remember their password.

To enable this feature, from the Navigation bar, go to the Gear icon -> Global Settings -> Login Configuration ->
User Reset tab and select Enable Forgot Password.

This feature causes the Forgot Password? link to appear on the IdentityIQ login window. When a user clicks this
link, they are prompted to answer one or more security questions that enable IdentityIQ to verify their identity.
After a user successfully answers the security questions, the user is prompted for a new password. The
pass-through application is then updated with that new password.

Pass-Through	Authentication	Requirements

Though the setup of pass-through authentication is not the focus of this document, there are a few
configurations that are required for Pass-Through Authentication to work. If these configurations are not
properly completed, authentication features related to Pass-Through Authentication can be prevented from
working.

The Authentication Search Attributes field for the application must contain the names of the application
account schema attribute(s) that contain the Username entered during sign-on. This field tells IdentityIQ which
application fields to search to locate the matching application account. One or more attribute names can be
specified in this field.

Defining	the	Security	Questions

To specify the security questions, from the Navigation bar, go to the Gear icon -> Global Settings -> Login
Configuration -> User Reset tab -> Security Question Configuration -> Questions area. A default set of security
questions is provided. Any of these can be removed from the list by clicking the icon next to the question to be
deleted. Custom questions can be defined as needed by clicking the icon next to the last question in the list and
entering a new question in the box that appears.

Configuring	the	Security	Question	Settings

To configure security questions, from the Navigation bar, go to the Gear icon -> Global Settings -> Login
Configuration -> User Reset tab -> Security Question Configuration -> Settings area.

Security	Questions	

The Security Questions tabs allows users to change security questions and answers, should the user need
assistance when the password has been forgotten. The Security Questions tab is only displayed when Forgot
Password and Security Question is enabled from the Login Configuration -> User Reset page.

Select the desired questions from the three drop-downs and provide the answers in the Answer field.

Click Save.
294 SailPoint IdentityIQ System Administration Guide

Password Management with Pass-Through Authentication
The purpose of each of these settings is described below:

• Number of questions asked to authenticate an identity — Specifies the number of correct answers to
the security questions the user has to provide to be authenticated by these questions.

• Number of authentication answers a user must have defined in IdentityIQ — Specifies the number
questions for which the user must provide answers in advance so they can be authenticated using these
questions; questions without known answers cannot be used for authentication because there is no
“correct” answer to be matched.

• Prompt users for answers to unanswered security questions upon successful login — Causes IdentityIQ
to check (during login) whether the user has the required number of authentication answers provided
already and, if not, prompt the user for those answers.

• Maximum number of unsuccessful authentication attempts before IdentityIQ lockout — Locks the
IdentityIQ account when a user enters invalid authentication answers this number of times.

• Number of minutes a user will remain locked out due to unsuccessful authentication: Determines the
duration of the lockout before the user can try again to sign in to IdentityIQ. During the lockout period,
an administrator with the appropriate system capabilities can unlock the account by clicking Unlock
Identity on the Identity Cube's Attributes tab.

Recording	Security	Answers

A user can only be authenticated through these questions if the answers are pre-recorded in IdentityIQ. Users can
be required to provide these answers or they can choose to provide (or modify) their own answers.

Requiring	Security	Answers

Users can be forced to provide answers to these questions by selecting Prompt users for answers to unanswered
security questions upon successful login in the Authentication Questions Settings. This causes the system to
check whether each user has the required number of authentication answers recorded during the login process.
If too few answers are recorded for a user, the Answer Authentication Questions window is display and the user
is required to answer these questions before they can gain access to IdentityIQ. The number of questions shown
depends on the required number of answers in the Security Question Settings (Number of authentication
answers a user must have defined in IdentityIQ). The user can select any of the configured questions from the
question drop-down lists.

Users who have already provided the required number of answers are not prompted again; this window is
bypassed in subsequent logins and they are taken directly to the normal IdentityIQ interface.

Independently	Providing	or	Editing	Security	Answers

If users are not forced to provide authentication answers, users can choose to provide the answers through the
Edit Preferences page. Users can also update their authentication answers on this window, including changing
their answers or choosing different questions.

1. From the Navigation menu bar, click the user name and select Preferences.

2. Select the Password tab.

3. Select the desired questions from the question lists and provide the appropriate answer for each question.
Click Save to save the changes.
SailPoint IdentityIQ System Administration Guide 295

Password Management with Pass-Through Authentication
296 SailPoint IdentityIQ System Administration Guide

Active Directory and ADAM: SSL
Chapter	23:	Application-Specific	
Password	Management	
Requirements

Some applications have specific configurations requirements that go beyond the basic password management
requirements previously discussed in this document. This section explores some of those application-specific
requirements.

Active	Directory	and	ADAM:	SSL

Both AD and ADAM require a secure connection (SSL) for any password management activities. IdentityIQ offers
two separate read-write connectors for each of these applications.

SSL	Configuration	for	the	Direct	Connector

Installations using the AD or ADAM Direct connector must generate and install an SSL certificate under AD/ADAM
and then build a java key store for IdentityIQ that trusts the AD/ADAM SSL certificate.

These are the basic steps for building that java key store and configuring IdentityIQ to use it.

1. On a Domain Controller, log in as an administrator and open Internet Explorer. Navigate to Tools -> Inter-
net Options -> Content and click Certificates.

2. Switch to the Trusted Root Certificate Authorities Tab and select the certificate issued by your Active
Directory integrated Certificate Server. Click Export.

3. Choose Base-64 encoded X.509(.CER) as the Export File Format.

4. Specify file name for the exported certificate.

5. Finish the export and copy the exported.cer file to the Java client machine.

6. At the client machine run the following command from the jdk bin directory.

keytool -import -alias [aliasname] -keystore [keystore filename] -file [fully
qualified certificate filename]

The key store (jks) file is created in the bin directory where the keytool command is found. The name of the
file is the name you specified following the -keystore parameter, such as myCaCerts.jks.

7. Create the Application in IdentityIQ using the appropriate direct connector (Active Directory or LDAP -
ADAM). Select Use SSL and provide all the required values. Save the application (do not click Test Connec-
tion yet).

8. Assuming that the keystore is created in /tomcat/apache-tomcat-7.0.47/, enter the following in
catalina.sh:
-Djavax.net.ssl.trustStore=/tomcat/apache-tomcat-7.0.47/myCaCerts.jks
-Djavax.net.ssl.trustStorePassword=password

9. Restart the Tomcat server.
SailPoint IdentityIQ System Administration Guide 297

Windows Local and Active Directory: IQService Agent
10. Return to the Application Definition in the UI and click Test Connection to verify that the SSL connection is
properly configured.

Windows	Local	and	Active	Directory:	IQService	Agent

Note: AD and ADAM require a secure connection (SSL) for any password management activities.

The IQService is a native Windows service that enables IdentityIQ to participate in a Windows environment and
access information only available through Win32 APIs. You must install and register an IQService before you can
provision to Active Directory, aggregate Terminal Services attributes, collect information from the Windows
Event Logs, or load local Windows users or groups through the Direct connectors. This includes provisioning of
password changes.

IQService can be installed on an independent Windows computer or on a Windows machine that is a member
of a domain. It listens for connections from an IdentityIQ instance and can be used to do one of several things,
including:

• Aggregate access to the file shares on the server

• Aggregate local user and group definitions from the independent Windows machine

• Aggregate users and groups from the Active Directory or ADAM domain of which the machine is a
member

• Change the passwords for a user who has rights to the independent Windows machine or the domain

The application definition for the Active Directory or Windows Local application must then be configured with
the host and port where IQService is installed and listening.

Windows	Desktop	Password	Reset	Utility

Since a user would normally have to successfully log into their computer before accessing IdentityIQ (or any other
application) through a web browser, enabling reset of a Windows Desktop password requires the installation of
a utility application called IdentityIQ Lifecycle Manager Desktop Password Reset. This application adds a link or
button to the Windows login screen that can be configured to connect users to IdentityIQ's Forgot Password
feature (or any other web-based password management solution) in a restricted browser to change their
password; this functionality bypasses the Windows login credential requirement for this specific and limited
purpose.

Note: Users can only be authenticated and permitted to change the Windows Desktop password
through the IdentityIQ Forgot Password functionality if they have previously configured
challenge question answers that can be used for authentication.

This utility is available to any customer who has licensed the Lifecycle Manager product.

When this application is installed, the Forgot Password? button, tile, or link appears on the login windows.

If configured to point to the IdentityIQ Forgot Password functionality, the restricted browser window displays the
IdentityIQ's challenge question authentication windows.
298 SailPoint IdentityIQ System Administration Guide

	IdentityIQ Introduction
	Chapter 1: Provisioning with IdentityIQ
	Recording Provisioning Requests
	Certifications
	Policy Violations
	Policy Violation Remediations for SOD Policy Violations
	Policy Violation Remediations for Non-SOD Policy Violations

	Identity-Refresh-Driven Assignments
	Lifecycle Manager Requests
	Lifecycle Manager Toolbar
	Request Access
	Manage Accounts
	Other Lifecycle Manager Options

	Lifecycle Event-Driven Provisioning
	Manage Lifecycle Events and Actions
	Lifecycle Events and Actions How-To Tasks

	Other Identity Cube Modifications

	Processing Provisioning Requests
	Involvement
	Overview of Provisioning Process
	Compiling the Plan
	Create the Provisioning Project
	Evaluate and Expand Roles
	Apply Provisioning Policies
	Identify Questions
	Filter and Check Dependencies
	Partition the Plan

	Answering Provisioning Policy Questions
	Exceptions
	Provisioning Forms

	Implementing the Plan
	Integrations
	Direct Read-Write Connectors
	Work Items
	Plan Initializer Rule or Script

	Updating the Identity Cube
	Identity Refresh
	General Guidelines

	Special Case: Optimistic Provisioning

	Summary of Workflows, Tasks, and Rules in Provisioning

	Chapter 2: Forms
	Specifying Custom Forms
	Role/Application Provisioning Policies
	Defining Application Provisioning Policy
	Field Properties and Value Properties
	Defining Role Provisioning Policies

	Identity Provisioning Policy
	Workflow Forms
	Process Variable and Step Forms in Workflows

	Report Forms

	Components of a Form Definition
	Form
	Attributes
	Buttons
	Sections
	Fields

	Working with the Form Editor
	Detail View
	Expandable Tree
	Edit Options
	Section
	Fields and Rows
	Button

	Form Examples
	Application and Role Provisioning Policy
	Identity Provisioning Policy
	Workflow Form
	Report Forms

	Form Models
	Identity Model Structure
	Accessing Identity Model Attributes
	Referencing a Form Model
	Syntax

	Chapter 3: Configure Risk Scoring
	Identity Risk Score Configuration
	Identity Baseline Access Risk Tab
	Identity Composite Scoring Tab

	Application Risk Score Configuration
	Application Component Scores Tab
	Application Composite Score Tab

	Chapter 4: Partitioning
	Configuring Partitioning Request Objects

	Chapter 5: Tasks
	Tasks Page
	Predefined Tasks

	Working with Tasks
	How to Create a New Task
	How to Edit a Task
	How to Schedule a Task

	Scheduled Tasks
	Working with Schedules
	How to Edit a Schedule

	Task Results
	Task Types
	Account Aggregation
	Account Group Aggregation
	Activity Aggregation
	Alert Aggregation
	Alert Processor
	Classification
	Data Export
	Effective Access Indexing
	Application Builder
	Working with Flexible Schemas and Provisioning Forms

	ArcSight Data Export
	Configuring HP ArcSight Task to populate host name or IP

	Encrypted Data Synchronization Task
	Entitlement Role Generator
	FIM Application Creator
	IQService Public Key Exchange
	ITIM Application Creator
	IdentityIQ Cloud Gateway Synchronization
	Identity Refresh
	Identity Request Maintenance
	Missing Managed Entitlements Scan
	Novell Application Creator
	OIM Application Creator
	Policy Scan
	Propagate Role Changes
	Refresh Logical Accounts
	Role Index Refresh
	Run Rule
	Sequential Task Launcher
	System Maintenance
	Target Aggregation

	How to Complete Task Work Items

	Chapter 6: Alerts
	Alerts Page
	Alert Definitions Page
	Create Alert Definition
	How to Create an Alert Definition

	Edit Alert Definitions
	How to Edit an Alert Definition
	How to Filter Alerts

	Chapter 7: Work Items
	Work Item Administration
	Work Item Archive

	Chapter 8: IdentityIQ Console
	Launching the Console
	Viewing the List of Commands
	Command-Line Parameters
	Command Syntax
	Syntax for Redirecting Command Output

	Console Commands
	Commonly Used Commands
	Help and ?
	Exit and Quit
	Source
	List
	Get
	Checkout
	Checkin
	Delete
	Import
	Export
	ListLocks
	BreakLocks
	Rule
	Parse

	Less Commonly Used Commands
	DTD
	Classes
	Count
	ImportManagedAttributes
	ExportManagedAttributes
	Run
	RunTaskWithArguments
	Restart
	RefreshFactories
	RefreshGroups
	ShowGroup
	Workflow
	Validate
	Wftest
	SQL
	Provision
	Lock
	Unlock
	ShowLock
	Oconfig
	TextSearch

	Seldom Used Commands
	Properties
	Time
	Xtimes
	About
	Threads
	LogConfig
	Summary
	Rollback
	Rename
	ExportJasper
	Identities
	Snapshot
	Score
	Tasks
	TerminateOrphans
	Certify
	CancelCertify
	ArchiveCertification
	DecompressCertification
	WorkItem
	Approve
	Reject
	Warp
	Notify
	Authenticate
	SimulateHistory
	Search
	CertificationPhase
	Impact
	Event
	ConnectorDebug
	Encrypt
	HQL
	Date
	Shell
	Meter
	Compress
	Uncompress
	ClearEmailQueue
	ClearCache
	Service

	Chapter 9: Classifications
	Where Classification Data Comes From
	File Access Manager Classifications
	Classifications from Other Sources

	Working With Classification Data in IdentityIQ
	Lifecycle Manager: Access Requests and Approvals
	Adding Classifications to Roles and Entitlements
	Classifications in Certifications and Access Reviews
	Classifications in Policies and Policy Violations
	Classifications in Advanced Analytics
	Classifications in the Identity Warehouse
	Classifications in the Edit/View Identity Page

	Integrating with File Access Manager for Classifications
	File Access Manager Classification Processes
	Application Configuration
	Run Tasks to Aggregate and Process Classification Data

	Chapter 10: Using the Administrator Console
	Manage Task Results
	Active Tab
	Scheduled Tab
	Complete Tab

	Manage Provisioning Transaction Results
	Monitoring Your Environment
	Hosts
	Services
	Configuration

	Applications
	SailPoint Modules and Extensions

	Managing Business Processes
	Chapter 11: Business Process Management
	Chapter 12: Workflow Basics
	Terminology
	Important Workflow Objects
	Workflows Operation
	Provisioning Plans in Workflows

	Triggering Workflows
	IdentityIQ Default Workflows
	Workflow Types
	Sub-process Workflows
	Transient Workflows

	Chapter 13: Using the Business Process Editor with Workflows
	Creating and Editing Workflows
	Basic Workflow How-To Tasks
	How To View or Edit a Workflow
	How To Create a New Workflow
	How To Use an Existing Workflow to Create a New Business Process

	Process Editor Tabs
	Process Details Tab
	Process Variables Tab
	Basic View
	Variable Initialization
	Timing of Variable Definition

	Process Designer Tab
	Process Steps
	Approval Steps
	Form Steps
	Step Conditions
	Step Transitions

	Process Metrics Tab

	Chapter 14: Editing Workflow XML
	Accessing the XML
	Debug Pages
	IdentityIQ Console
	Re-importing the XML

	Dollar-Sign Reference Syntax
	XML Content
	Header Elements
	Workflow Element
	Variable Definitions
	Initializer Options

	Workflow Description
	Rule Libraries
	Step Libraries
	Built-in Steps

	Step Elements
	Transition Element
	Step Actions
	Wait Attribute
	Catches Attribute

	Approval Steps
	Nested Approvals

	Workflow Library Methods
	Standard Workflow Handler
	Identity Library
	IdentityRequest Library
	Approval Library
	Policy Violation Library
	Role Library
	LCM Library

	Monitoring Workflows
	Viewing the Workflow Case XML

	Chapter 15: Advanced Workflow Topics
	Loops within Workflows
	Launching Workflows from a Task or Workflow
	Workflows Launched from Custom Tasks
	Workflows Launched by Other Workflows

	Workflow Forms
	Process Variable and Step Forms

	Managing Reports
	Chapter 16: Reports Introduction
	Report Terminology

	Chapter 17: Report Use and Customization
	Reports Tab
	Edit Report Page
	Standard Properties
	Report Layout
	Report-Specific Parameters
	Saving and Executing Report Instances
	Modifying through Preview Mode
	Reports without Preview Option

	My Reports Tab
	Scheduled Reports Tab
	Report Results Tab
	XML Representation of Reports and Instances

	Chapter 18: Developing Custom Reports
	Report as a TaskDefinition
	Elements within TaskDefinition
	Attributes Map
	Signature
	Description
	Required Rights

	Report Definition
	ReportForm: Collecting Report-Specific Parameters
	Standard Forms for Report Specification

	DataSource: Retrieving Report Data
	Filter DataSource
	Java DataSource
	HQL DataSource

	Columns/ReportColumnConfig: Report Grid Presentation
	RenderScript and RenderRule

	Initialization Script or Rule
	Signature Extended Arguments

	Extended Column Script or Rule
	Validation Script or Rule
	ReportSummary: Summary Table

	Chart: Report Graph
	Standard Chart Examples
	Chart Script and DataSourceRule

	Report Forms

	Chapter 19: Reports DataSource Example

	Managing Passwords
	Chapter 20: Introduction to Password Management
	Chapter 21: Application Password Management
	Enabling Password Management in IdentityIQ
	Defining Special Characters Available Password Use

	Configuring Applications for Password Management
	Configuring Password Policies for an Application
	Defining a Password Policy
	Password Dictionary

	Policy Re-Use
	Password Validation Process

	Application Change Password Provisioning Policy
	Requesting a Password Change
	Self-Service Requests
	Requests for Others
	LCM Manage Passwords Workflow

	Passwords on New Account Requests
	Troubleshooting Password Management with Provisioning Plan Debugging

	Chapter 22: IdentityIQ Password Management
	IdentityIQ Password Configuration
	IdentityIQ Password Policy
	Defining Special Characters for Password Use
	Resetting IdentityIQ Internal Passwords
	Self-Service Password Reset
	Password Resets for Others
	Password Expiration Resets

	Password Management with Pass-Through Authentication
	Defining the Security Questions
	Configuring the Security Question Settings
	Security Questions
	Recording Security Answers
	Requiring Security Answers
	Independently Providing or Editing Security Answers

	Chapter 23: Application-Specific Password Management Requirements
	Active Directory and ADAM: SSL
	SSL Configuration for the Direct Connector

	Windows Local and Active Directory: IQService Agent
	Windows Desktop Password Reset Utility

