
IdentityIQ Console
Version: 8.4

Revised: September 2023

This document and the information contained herein is SailPoint Confidential Information

Copyright and Trademark Notices

Copyright © 2023 SailPoint Technologies, Inc. All Rights Reserved.

All logos, text, content, including underlying HTML code, designs, and graphics used and/or depicted on these written
materials or in this Internet website are protected under United States and international copyright and trademark laws
and treaties, and may not be used or reproduced without the prior express written permission of SailPoint Tech-
nologies, Inc.

“SailPoint Technologies,” (design and word mark), “SailPoint,” (design and word mark), "Identity IQ,” “IdentityNow,”
“SecurityIQ,” “Identity AI,” “Identity Cube,” and “SailPoint Predictive Identity” are registered trademarks of SailPoint
Technologies, Inc. “Identity is Everything,” “The Power of Identity,” and “Identity University” are trademarks of
SailPoint Technologies, Inc. None of the foregoing marks may be used without the prior express written permission of
SailPoint Technologies, Inc. All other trademarks shown herein are owned by the respective companies or persons
indicated.

SailPoint Technologies, Inc. makes no warranty of any kind regarding these materials or the information included
therein, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
SailPoint Technologies shall not be liable for errors contained herein or direct, indirect, special, incidental or con-
sequential damages in connection with the furnishing, performance, or use of this material.

Patents Notice. https://www.sailpoint.com/patents

Restricted Rights Legend. All rights are reserved. No part of this document may be published, distributed, reproduced,
publicly displayed, used to create derivative works, or translated to another language, without the prior written consent
of SailPoint Technologies. The information contained in this document is subject to change without notice.

Use, duplication or disclosure by the U.S. Government is subject to restrictions as set forth in subparagraph (c) (1) (ii)
of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 for DOD agencies, and sub-
paragraphs (c)(1) and (c)(2) of the Commercial Computer Software Restricted Rights clause at FAR 52.227-19 for
other agencies.

Regulatory/Export Compliance. The export and re-export of this software is controlled for export purposes by the U.S.
Government. By accepting this software and/or documentation, licensee agrees to comply with all U.S. and foreign
export laws and regulations as they relate to software and related documentation. Licensee will not export or re-
export outside the United States software or documentation, whether directly or indirectly, to any Prohibited Party and
will not cause, approve or otherwise intentionally facilitate others in so doing. A Prohibited Party includes: a party in a
U.S. embargoed country or country the United States has named as a supporter of international terrorism; a party
involved in proliferation; a party identified by the U.S. Government as a Denied Party; a party named on the U.S.
Department of Commerce’s Entity List in Supplement No. 4 to 15 C.F.R. § 744; a party prohibited from participation in
export or re-export transactions by a U.S. Government General Order; a party listed by the U.S. Government’s Office
of Foreign Assets Control as ineligible to participate in transactions subject to U.S. jurisdiction; or any party that
licensee knows or has reason to know has violated or plans to violate U.S. or foreign export laws or regulations.
Licensee shall ensure that each of its software users complies with U.S. and foreign export laws and regulations as
they relate to software and related documentation.

Contents

IdentityIQ Console 1

Launching the Console 2

Viewing the List of Commands 3

Command-Line Parameters 7

Piped Commands in the IdentityIQ Console 8

Sample Unix Piped Commands 8

Sample Windows Piped Commands 8

Command Syntax 9

Syntax for Redirecting Command Output 10

IIQ Console Commands 11

General Commands 11

Object Commands 12

Identities Commands 21

Task Commands 23

Certification Commands 25

Group Commands 27

Workflow Commands 28

Test Commands 30

Plugin Commands 34

Recommender Commands 35

Other Commands 36

Access History Console Commands 51

Data Extract Console Commands 58

IdentityIQ Console

SailPoint IdentityIQ Console 1

IdentityIQ Console

The IdentityIQ Console is the command line utility for interfacing with IdentityIQ. This section lists the console com-
mands and their descriptions.

Launching the Console

SailPoint IdentityIQ Console 2

Launching the Console

The IdentityIQ Console (iiq console) is launched by running the iiq.bat file found in the installation Dir-

ectory/WEB-INF/bin directory. From a command prompt, launch the console with the command as shown for
each operating system type:

Windows: iiq console

Unix: ./iiq console -j

The iiq console requires the System Administrator capability.

By default, the iiq console tries to authenticate with the default user/password spadmin / admin. If authentication
fails, you are prompted for a user name and password. Specify the user name and password on the command line.

For example:

iiq console -u amy.cox -p mypassword

The console prompts for user input if the password is omitted, and will not launch if the credentials supplied are not
associated with an identity that has console access.

Authentication is disabled if there are no identities. This case is encountered during IdentityIQ setup, before init.xml is
imported.

The -j option turns on the JLine Java library for handling console input, enabling some ease-of-use functions such as
command history recall. Command history recall is enabled in Windows without this library, so this parameter is not
required in the Windows environment.

The > prompt character indicates that the console is running and ready to accept commands.

Viewing the List of Commands

SailPoint IdentityIQ Console 3

Viewing the List of Commands

The help command displays a list of all commands available in the console along with a short description of each. At
the command prompt, enter help or? to see this full list of available commands.

Command Description

? Display command help

help Display command help

echo Display a line of text

quit Quit the shell (same as exit)

exit Exit the shell (same as quit)

source Execute a file of commands

properties Display system properties

time Show how much time a command takes to run

xtimes Run a command x times

about Show application configuration information

threads Show active threads

logConfig Reload log4j configuration

Objects

dtd Create dtd

summary Summarize objects

classes List available classes

list List objects

count Count objects

get View an object

checkout Checkout an object to a file

checkin Checkin an object from a file

delete Delete an object

rollback Rollback to a previous version

rename Rename an object

import Import objects from a file

importManagedAttributes Import managed attribute definitions from a CSV file

export Export objects to a file

Viewing the List of Commands

SailPoint IdentityIQ Console 4

Command Description

exportManagedAttributes Export managed attribute definitions to a CSV file

exportJasper
Exports only the jasperReport xml contained in a Jasper-
Template object

associations Show target associations for an object

Identities

identities List identities

snapshot Create an identity snapshot

score Refresh compliance scores

listLocks List all class locks

breakLocks Break all class locks

Tasks

tasks Display scheduled tasks

run Launch a background task

runTaskWithArguments Launch a task synchronously with arguments

terminate Terminate a background task

terminateOrphans Detect and terminate orphaned tasks

restart Restart a failed task if possible

send command Send an out-of-band task command

taskProfile Display task profiling report

Certifications

certify Generate an access certification report

cancelCertify Cancel an access certification report

archiveCertification Archive and delete an access certification report

decompressCertification Decompress an access certification archive

Groups

refreshFactories Refresh group factories (but not groups)

refreshGroups Refresh groups (but not factories)

showGroup Show identities in a group

Workflow

workflow Start a generic workflow

validate Validate workflow definition

workItem Describe a work item

approve Approve a work item

Viewing the List of Commands

SailPoint IdentityIQ Console 5

Command Description

reject Reject a work item

wftest Run the workflow test harness

Tests

rule Run a rule

parse Parse an XML file

warp Parse an XML object and print the re-serialization

notify Send an email

authenticate Test authentication

authenticateWithOptions Test authentication with options

simulateHistory Simulate trend history

search Run a simple query

textsearch Run a full text search

certificationPhase Transition a certification into a new phase

impact Perform impact analysis

event Schedule an identity event

expire
Immediately expire a workitem that has an expiration configured.
If the workitem is type Event it'll also push the event forward with
the workflower

connectorDebug
Call one of the exposed connector methods using the specified
application

encrypt Encrypt a string.

sql Execute a SQL statement

hql
Execute a search based on a Hibernate Query Language state-
ment.

updateHql Update the hql search.

date

Displays the current system date/time and its UTIME (universal
time) value (Optional UTIME parameter causes the command to
display the date/time corresponding to the provided UTIME
value.)

shell
Escapes out to the command line and run the command spe-
cified.

meter
Toggles metering on and off; while metering is on, the console
reports some timing statistics for each command executed.
Meter information is displayed after the results of each com-

Viewing the List of Commands

SailPoint IdentityIQ Console 6

Command Description

mand as it is executed.

compress
Compress the contents of a file to a string that can be included
within an XML element.

uncompress
Return a compressed, Base64-encoded file to its uncompressed
format.

clearEmailQueue Remove any queued emails that have not been sent

provision Evaluate a provisioning plan

lock Lock an object

unlock Break a lock on an object

showLock Show lock details

clearCache Clear the object cache

service Service management

oconfig Analyze ObjectConfigs

plugin Install and manage plugins

recommender Manage and test recommendations

Command-Line Parameters

SailPoint IdentityIQ Console 7

Command-Line Parameters

You can use parameters with the iiq console commands to manage command behavior.

Command Description

-u <user-
name> -p
<password>

Run the console using the supplied username and password for authen-
tication.

Example: -u mary.johnson -p mypwd

If you provide a username but omit the password, the iiq console prompts for
the password value.

-j
Used in Unix systems only. Adds improved command editing and history sup-
port. Use cursor-up and cursor-down to navigate console command history.

-h <host-
name>

Override the hostname used for the console.

Example: -h consoleA

-c <command>
Run the given command, and then exit.

Example: -c "list Certification"

-f <filename>
Run the commands read from the provided file, then exit.

Example: -f myCommands.txt

-e <CSV of ser-
vices to start>

Automatically start the services specified in the provided comma-separated list.

Example: -e Heartbeat,Task,Reanimator

-heartbeat
Force the Heartbeat service to automatically start. This is the equivalent to -e
Heartbeat

Piped Commands in the IdentityIQ Console

SailPoint IdentityIQ Console 8

Piped Commands in the IdentityIQ Console

The iiq console commands can use piping as a useful way to filter or redirect output.

You can use standard Unix or Windows commands to process the output of your iiq console commands. You must
use the commands (Unix or Windows) that are appropriate to your own operating system. Unix commands will not
work in a Windows environment, and vice versa.

Sample Unix Piped Commands
List only manual workitems:

list workitem | grep manual

Get a count of all your policies:

list policy | wc -l

List policies, excluding any SOD (separation of duties) policies, sort them in reverse order, and write the output to a
text file:

list policy | grep -v SOD | sort -r | > MyNonSODPoliciesInReverseOrder.txt

Sample Windows Piped Commands
List only manual workitems:

list workitem | findstr manual

List policies and direct the list output to the clipboard:

list policy | clip

List all the "Example" rules in your system, and write the output to a text file:

list rule | findstr Example | > AllExampleRules.txt

Command Syntax

SailPoint IdentityIQ Console 9

Command Syntax

The syntax for any console command that requires parameters can be determined by entering that command with no
arguments.

> workflow

usage: workflow name [varfile]

Command names are case sensitive and must be entered as shown in the command list. Parameters are not case
sensitive.

Some commands take no arguments and execute if entered. This table contains a list of the commands that require
no arguments.

Command Action

? or help Lists all available console commands

quit or exit Exits the console shell

classes Lists all classes

refreshGroups Refresh group indexes (Optional group name or ID can be specified)

refreshFactories
Refresh set of GroupDefinitions for a GroupFactory (Optional factory
name or ID can be specified)

logConfig Reloads log4j configuration from log4j2.properties file

summary Lists all classes and the count of objects of that class in the system

properties Displays Java properties of the server where IdentityIQ is installed

about Displays application configuration information

threads Shows a list of active threads

tasks
Writes a list of all currently scheduled tasks, in a columnar layout, to the
console (stdout)

identities
Writes the Name, Manager, Roles, and Links for each Identity in the sys-
tem to the console (stdout)

date
Displays the current system date/time and its UTIME (universal time)
value (Optional UTIME parameter causes the command to display the
date/time corresponding to the provided UTIME value.)

status Reports current running status of the task and request schedulers

meter
Toggles metering on and off; while metering is on, the console reports
some timing statistics for each command executed. Meter information is

Command Syntax

SailPoint IdentityIQ Console 10

Command Action

displayed after the results of each command as it is executed.

clearEmailQueue Deletes all queued but unsent email messages

clearCache Clears the IdentityIQ object cache

Syntax for Redirecting Command Output
Most of the commands report data or error messages to the console or standard out (stdout) for the system. The out-
put for any command can be redirected to a file by specifying > filename at the end of the command.

This example redirects the output from the get command to a file:

> get identity Adam.Kennedy > c:\output\AdamKennedyID.xml

IIQ Console Commands

SailPoint IdentityIQ Console 11

IIQ Console Commands

These sections list and document the syntax and actions of the iiq console commands.

General Commands

Help and ?

These two commands list all the available console commands.

Syntax
?
help

Examples

> ?

> help

Result Lists all commands available in the console

Exit and Quit

These two commands exit the console shell, returning the user to the operating system command prompt.

Syntax
exit
quit

Examples

> exit

> quit

Result Exits console shell and returns user to the operating system command prompt

Source

The source command runs commands from a script file. The commands on each line in the file are executed by the
console sequentially.

Syntax source filename

Examples source c:\data\cmdfile.txt

Result Runs the console commands in the c:\data\cmdfile.txt file sequentially

Echo

The echo command displays a line of text, returning back what you enter. May be useful for debug situations. For
example, if you have a file executing some console commands, you can import it into the console and then send the

IIQ Console Commands

SailPoint IdentityIQ Console 12

output to a file. Placing echo statements in with the other commands can give the interested party an idea how things
went during the execution of the commands.

Syntax echo <text>

Example
> echo blah

blah

Result Echoes back the text you entered.

GetDependancyData

The getDependancyData command is used by IQService based connectors, to verify connectivity to the configured
IIQService and UpdateService services, and to return information such as their ports, communication channels (TLS
or non-TLS), and .NET Version. This command is also triggered during the doHealthCheck/ testConfiguration oper-
ations.

Object Commands

List

The list command lists all objects of the specified class, constrained by any specified filter. If this command is spe-
cified without arguments, the command syntax is displayed, followed by a list of all available classes whose objects
can be listed. This is helpful in locating objects within the system and in identifying object names to use as parameters
on other commands.

Syntax

list classname [filter]

filter: xxx - names beginning with xxx

xxx* - names beginning with xxx

*xxx - names ending with xxx

xxx - names containing xxx

Examples > list application ent*

Result Lists all application objects whose names begin with ent

Get

The get command displays the XML representation of the named object.

Syntax get classname<objectnamere or ID>

IIQ Console Commands

SailPoint IdentityIQ Console 13

Examples > get identity Adam.Kennedy

Result Displays the Adam.Kennedy Identity in XML format

This command only displays the object to the console (stdout), it does not export the object. The output can be redir-
ected to a file if the user has write access to the server's file system.

> get identity Adam.Kennedy > c:\output\AdamKennedyID.xml

Other alternatives for getting the XML representation of an object into a text file include:

l Copying and pasting contents of this command's stdout into a text file

l Retrieving the object's XML from the IdentityIQ Debug pages

l Using the checkout command (described next) to write the XML representation of an object
to a text file

Checkout

The checkout command writes a copy of the XML representation of the requested object to the specified filename.
The file can be used for review or for moving objects from one environment to another, for example, from the user
acceptance testing environment to production. Organizations doing custom development on rules, workflows, etc.
might use checkout to extract any of these objects to a file for modification.

Syntax checkout class name <objectname or ID> file [-clean [=id,created…]]

Examples > checkout rule “Cert Signoff Approver” certrule.xml

Result
Writes a copy of the Cert Signoff Approver rule's XML representation to the file cer-
trule.xml

The -clean option can be used to remove all values that do not transfer between IdentityIQ instances, such as created
and modified dates as well as globally unique ID values (GUIDs). Specifying the -clean option with no qualifiers
cleans the id, created, modified, and lastRefresh attributes. The -clean option can also be used to explicitly clear spe-
cific fields by name. The fields to clear must be listed in a comma separated list.

Checkin

The checkin command reads a file containing an object's XML representation and saves the object into the database.
If the object is a workItem, the command invokes the workflower to process the workItem. If the object is a bundle
(role) and the approve parameter is specified, a role approval workflow is launched. For all other object types, and for
bundles that are submitted without the approve parameter, the object is saved into the database.

The command's syntax parsing allows the approve parameter to be specified for any object but it only impacts the pro-
cessing on Bundle objects.

IIQ Console Commands

SailPoint IdentityIQ Console 14

Syntax checkin filename [approve]

Examples

> checkin newRole.xml approve

> checkin bobSmithID.xml

Result

First example saves Identity Bob Smith, as represented by the XML in
bobSmithID.xml, into to the database; overwrites existing or adds new record

Second example launches an approval workflow for the bundle object represented
by the XML in newRole.xml

If an Import file is specified as the input file for this command, only the first object in the file is checked in; the rest are
ignored and a warning message is displayed to the console (stdout).

Note: The checkin command is not supported for Access History.

Delete

This action cannot be undone and should be used with extreme caution and only in rare circumstances.

The delete command deletes the named object and removes all of its owned, or subordinate, objects. In a production
environment, this is not recommended unless specifically directed by IdentityIQ Support.

Syntax delete classname <objectname or ID>

Examples > delete identity bob.smith

Result Removes Identity Bob Smith and all of his associated objects from the system

Wildcards can be used on the <object name or ID> argument:
— * – all objects of the specified class (use with extreme caution!)
— xxx – all objects whose name or ID contains xxx

Note: The delete command is not supported for Access History.

Import

The import command imports objects into IdentityIQ from an XML file. This command can be used on a file that con-
tains a Jasper report, a IdentityIQ import file, or an object of one of the standard object classes. The file contents are
evaluated and processed based on the first tag in the file:

IIQ Console Commands

SailPoint IdentityIQ Console 15

l JasperReport: Jasper report

l IdentityIQ: IdentityIQ import object; can contain multiple regular objects in one file as well as
an ImportAction tag that directs how the contents of the file are processed, for example,
merge, include, execute, logConfig.

l Anything else: assumed to be a single regular object

Syntax import [-noids] filename

Examples

> import init.xml

> import -noids init.xml

Result

The first example Imports the contents of the file init.xml into the IdentityIQ data-
base.

In the second example, all ID attributes are removed before parsing occurs.

This action is a normal part of the initialization process for IdentityIQ.

Syntax import [-noids][-noroleevents] filename

Examples

> import -noids bundles.xml

> import -noids -noroleevents bundles.xml

Result

The first example allows user to import the events. It removes all ID attributes
before parsing.

The second example disables generation of role change events for role propaga-
tion.

Select the option to Allow Role Propagation from the Global Settings > IdentityIQ
Configuration > Roles option in UI.

This is one of the most commonly used commands. Installations who manage their workflows and rules in an external
source code control system, for example, use this command to bring changes to those objects into IdentityIQ once
they have been modified in their external XML representations.

Note: The import command is not supported for Access History.

Export

IIQ Console Commands

SailPoint IdentityIQ Console 16

The export command writes all objects of a given class to a specified filename. This is commonly used in gathering
objects from IdentityIQ to deliver to IdentityIQ Support as resources in resolving tickets. It is also used for moving sets
of objects between environments and for managing objects outside of IdentityIQ, such as storing workflows and rules
in a source code control system.

More than one class can be exported at a time to the same file by specifying all the desired class names as arguments
to the command. If the export command is specified without any class names, all objects of all classes are exported to
the specified filename.

Syntax export [-clean[=id,created...]] filename [classnameclassname…]

Examples
> export -clean workflows.xml workflow

> export IdLink.xml identity link

Result

The first example exports the entire set of workflow objects from IdentityIQ to the
file workflows.xml, removing values from the id, created, modified, and lastRefresh
attributes.

The second example exports all identities and links to a single file.

DTD

The DTD command writes the IdentityIQ DTD (Document Type Definition) to the specified file.

Syntax dtd filename

Examples > dtd c:\DTD\IdentityIQ.dtd

Result Writes the IdentityIQ DTD to the file c:\DTD\IdentityIQ.dtd

Classes

The classes command lists all classes accessible from the console. These are frequently used as parameters to
other commands so this list can be helpful in entering correct arguments on those commands.

Syntax classes

Examples > classes

Result Lists class names for all classes accessible to the console

Count

The count command returns a count of the objects of the specified class.

Syntax count classname

Examples > count identity

Result Displays the count of Identity objects in the system

IIQ Console Commands

SailPoint IdentityIQ Console 17

ImportManagedAttributes

The importManagedAttributes command is used to set managed attribute values, including localized descriptions,
through a CSV file import. This can be used to update existing managedAttributes or to create new ones.

The filename can be specified with an absolute path or can be specified relative to the current working directory.
These are the specific requirements for the import file contents:

l The first line in the file must be a comment line (starting with #) that contains the column
names for the data records. Column names must be specified in a comma-separated format.
All column names must match managedAttribute standard or extended attributes or specify a
locale/supported language.

l Subsequent comment lines can be used to specify default values for attributes that are not
contained in the data records. For example, if the whole file relates to a single application,
the application name could be set as a default through a single comment line.

l Blank lines are permitted in the file, and are ignored, but cannot precede the first comment
line.

l The data records must consist of comma-separated data values.

Only types Entitlement and Permission are valid. Group managedAttributes are stored in IdentityIQ as a subcategory
of Entitlement type managedAttributes.

l Required attributes are type, application, attribute, and value. If type is not specified in the
file, type Entitlement is assumed. The others three properties must be specified in the file.
Type, application, and attribute can be specified through the data columns or with a single
default value in extra comment lines. The value attribute must be in the data columns and
cannot have a default value.

l The data values in the columns named to match supported languages should contain the
description to use for that locale.

Example File Contents:

value, displayName, en_US, owner
owner=Jeff.Wilson
application=AD

IIQ Console Commands

SailPoint IdentityIQ Console 18

attribute=MemberOf
type=Entitlement
"CN=administrators,CN=Roles,DC=iiq,DC=com", Admins, "Administrators group",
"CN=VPN,CN=Roles,DC=iiq,DC=com", VPN, "Remote Workers", Bob.Smith

The test option causes the command to parse and validate the file without saving changes to the database.

Syntax importManagedAttributes filename [test]

Examples > importManagedAttributes “c:\data\managedattributes.csv”

Result
Imports managed attribute data from the file c:\data\managedattrbutes.csv, updat-
ing existing attributes or creating new ones from the data

ExportManagedAttributes

The exportManagedAttributes command exports either object properties or descriptions for managedAttributes to a
CSV file. This is used to make mass changes to the managed attributes definitions or for collecting all the managed
attributes in one file to review as a group.

Syntax exportManagedAttributes filename [application] [language]

Examples
> exportManagedAttributes “c:\data\AdamManAttrDesc.csv” ADAM

en_US

Result
Exports the managed attribute description on ADAM application to the file
c:\data\AdamManAttrDesc.csv.

Application and language are both optional arguments and can be specified in either order. At most one application
and one language can be specified at a time. If no application name is specified, managed attributes for all applic-
ations are exported. If a language is specified, only the core identifying properties of the managed attributes (type,
application, attribute, value) and the descriptions for the specified locale are exported. If a language is not specified,
all other object properties except descriptions are exported.

The file format generated by this command can be used in the importManagedAttribute command, so this command
can be used to write values to a file for editing and reimporting. When an application name is specified on the export
command, the application is not shown in the data rows but is specified as a default in the file header comments, as
described and illustrated in the command details.

Properties

The properties command displays system properties.

Syntax properties

Examples > properties

Result Displays Java properties of the server on which IdentityIQ is installed

IIQ Console Commands

SailPoint IdentityIQ Console 19

Time

The time command reports the duration of another command.

Syntax time command

Examples > time run “refresh risk scores”

Result
Initiates the run command and then indicates how much time it took to run. Most
useful for long-running commands

Xtimes

The xtimes command repeats a single command as many times as specified in the first argument. This command is
used for performance testing purposes. Running a command numerous time provides a more accurate indication of
how long a process takes than running it once.

Syntax xtimes xcommand

Examples > xtimes 3 run “refresh risk scores”

Result Runs the refresh risk scores task three times in a row

This command can be combined with the time command to report timing statistics on the performance test. By spe-
cifying this command first (for example, xtimes 20 time run taskname), the time taken for each command run is repor-
ted. By specifying the time command first (for example, time xtimes 20 run taskname), the total time for all of the
sequential runs is reported.

About

The about command displays IdentityIQ's application configuration information.

Syntax about

Examples > about

Result
Lists application configuration specifics for the IdentityIQ instance (version, data-
base, host, memory, etc.)

Threads

The threads command displays all active threads in the instance.

Syntax threads

Examples > threads

Result Lists all active threads

LogConfig

IIQ Console Commands

SailPoint IdentityIQ Console 20

The logConfig command reloads the log4j configuration into the instance.

Syntax logConfig

Examples > logConfig

Result Reloads the log4j configuration from the log4j2.properties file

Rollback

The rollback command can undo a change to a role by restoring it from its BundleArchive object. BundleArchive
objects are created when role archiving is enabled for IdentityIQ. Role archiving tracks changes made to a role by stor-
ing the pre-modification state in a BundleArchive object when the Bundle object is updated. This command only
applies to the BundleArchive class.

Syntax rollback classname <objectname or id>

Examples > rollback BundleArchive “Contractor-IT”

Result
Restores the Contractor-IT role to the pre-modification state stored in its
BundleArchive object

Note: The rollback command is not supported for Access History.

Rename

The rename command changes the name of an object from its existing name to the value specified by the newname
parameter.

Syntax rename classname <objectname or ID> newname

Examples > rename application ADAM ADAM-Production

Result Changes the name of the ADAM application to ADAM-Production

The object can be found using its old Name or its ID value, but in either case, the newname value is used to update the
Name attribute for the object.

Note: The rename command is not supported for Access History.

ExportJasper

The exportJasper command creates a JasperReport XML file from a JasperTemplate object in IdentityIQ. Jasper
Report is a third party user interface for report writing. JasperReport XML is not compatible with IdentityIQ's XML so
the JasperReport XML is wrapped in a JasperTemplate object when saved in IdentityIQ. The JasperTemplate must be
exported to create a file that can be used directly with the Jasper user interface before it can be reformatted.

IIQ Console Commands

SailPoint IdentityIQ Console 21

Syntax exportJasper filename <JasperTemplateName or ID>

Examples > exportJasper c:\data\AggResRpt.xml AggregationResults

Result
Exports the Jasper XML from the AggregationResults JasperTemplate object into
the file c:\data\AggResRpt.xml

The import command can be used to re-import a JasperReport object into the database. The import wraps the XML in
a JasperTemplate.

Summary

The summary command lists all classes and the count of objects of each class. Changes in these counts for some
objects (for example, auditConfig) can indicate potential problems or areas of concern.

Syntax summary

Examples > summary

Result Lists class name and count of objects for each class in the system

Associations

The associations command is a simple way to list the TargetAssociation objects for a given object.

Syntax
associations <class> <name>

associations <id>

Examples
> associations bundle "Product Developer - IT"

> associations c0a80143853f11288185a7f03d051d52

Result

Target Type Target

----------- ------------------------------

P Eclipse

P Subversion

Target Type Target

----------- ------------------------------

P masterPrivileges

Identities Commands

ListLocks

IIQ Console Commands

SailPoint IdentityIQ Console 22

The listLocks command lists all locks held on any objects of the named class. At this time, Identity is the only class for
which this command operates.

BreakLocks

This command should be used with caution. Locks are useful in maintaining data integrity, and breaking them at the
wrong time can potentially permit conflicting updates that can result in data corruption.

The unlock command can be used to break a single lock whereas this command breaks all locks held on any object in
the specified class.

If a process is holding a lock but is unable to perform the required action, the lock can cause problems in other pro-
cesses' performance as well. The breakLocks command can be used to release locks forcibly. At this time, Identity is
the only class for which this command functions.

Syntax breakLocks classname

Examples > breakLocks identity

Result
Releases all locks held on any identity object in the system and reports to the con-
sole the identity name, lock holder, and UTIME value for the lock date / time and
the lock expiration date / time.

Identities

The identities command lists the Name, Manager, Roles, and Links for each identity in the system. By default, this
information prints to the console (stdout) and can be difficult to read due to screen wrapping. If the output is redirected
to a file, it is printed in the file in an easy-to-read style.

Syntax identities

Examples
> identities

> identities > identities.txt

Result

The first example writes the Name, Manager, Roles, and Links for each identity in
the system to the console (stdout).

The second example redirects that information to the file identities.txt.

Snapshot

The snapshot command takes a snapshot of the named identity as it exists at that moment and archives it in the data-
base as an IdentitySnapshot object. This object provides a historical record of the state of Identity objects at various
points in time. Automatic snapshotting can be enabled and configured to create IdentitySnapshot objects at specified
intervals or based on system activities (weekly, on aggregation change, etc.). The configuration of this feature can
negatively impact system performance.

IIQ Console Commands

SailPoint IdentityIQ Console 23

Syntax snapshot <identityname or ID>

Examples > snapshot Alan.Bradley

Result
Creates an IdentitySnapshot object for the identity Alan.Bradley, capturing his Iden-
tity Attributes, Roles (Bundles), Entitlements Outside Roles, Links, and Scorecard
information at that moment in time

Score

The score command refreshes the identity score for the named identity and updates that score in the database. Score
updates are more commonly executed through the IdentityIQ user interface.

Syntax score <identityname or ID>

Examples > score Alan.Bradley

Result
Recalculates the risk scores for Alan.Bradley and updates his Scorecard with the
new risk scores

Task Commands

Run

The run command starts execution of a task that requires and accepts no arguments. Three optional parameters can
be specified for this command: trace, profile, and sync.

l Trace – writes to the console (stdout) a trace of what happens as the task is run, depending
on how the task's tracing code is written.

l Profile – displays the timing of certain phases of the task, the details displayed depend on
the task's profile code.

l Sync – runs the task in synchronous execution mode, as opposed to scheduling it to run in
background. If sync is specified, the control returns to the console only after the task has com-
pleted and any error messages are written to the console. If sync is not specified, the task is
launched in the background and the results of the task are viewable in the taskResults object
and are accessible from the console or from the user interface under Setup > Tasks > Task
Results.

Syntax run taskname [trace] [profile] [sync]

Examples > run "Refresh Risk Scores"

Result Runs the Refresh Risk Scores task in background

IIQ Console Commands

SailPoint IdentityIQ Console 24

RunTaskWithArguments

The runTaskWithArguments command starts execution of a task that requires arguments. These tasks are always
run in synchronous execution mode. This can only be used for tasks that accept arguments of simple data types; spe-
cifying an object as an argument is not possible here.

Syntax runTaskWithArguments taskname [arg1=val1,arg2=val2,…]

Examples
> runTaskWithArguments "Identity Refresh" refreshLink-
s=True,promoteAttributes=False

Result Runs the Identity Refresh task, refreshing Links for the Identities

Restart

The restart command restarts execution of a task that failed.

Syntax restart taskResultName

Examples > run "Refresh Risk Scores"

Result Restarts the Refresh Risk Scores task in background if possible

Tasks

The tasks command lists the Name, State, Next Execution, and Cron Strings for all currently scheduled tasks in the
system.

Syntax tasks

Examples > tasks

Result All currently scheduled tasks are written to the console (stdout)

TerminateOrphans

The terminateOrphans command sets the completion status of any open taskResult objects to Terminated. While
tasks are running, their taskResults should be in a pending state, but occasionally task results can become orphaned
and remain in this non-completed state when the task has finished (or has otherwise been terminated). This command
can be used to clean up those orphaned taskResults but it must only be executed when there are no tasks running on
the application server or the taskResults for actively running tasks are terminated along with any orphaned results.

This command requires no arguments for execution but an artificial argument please has been added to prevent acci-
dentally running this command.

Syntax terminateOrphans please

Examples > terminateOrphans please

Result Sets all open taskResults for the application server to the Terminated status

IIQ Console Commands

SailPoint IdentityIQ Console 25

Terminate

The terminate command terminates a given background task. After running a terminate command, go to Task Res-
ults list in Setup >Tasks >Task Results to see the task with a Canceled status. You can select the canceled Task Res-
ult to see more details, including a warning that it was terminated by user request.

Syntax terminate <TaskResult name>

Example > terminate ADDirectAccountAggregation

Result

A termination request is sent to the task.

The Task Results list in Setup > Tasks > Task Results shows the task with Can-
celled status.

Details show that the task was terminated by user request.

Send Command

The sendCommand command sends an out-of-band task command to manually reset crashed requests. This is use-
ful for implementations that do not use the Reanimator service.

Syntax sendCommand <TaskResult name> <command>

Examples
> sendCommand ADDirectAccountAggregation reanimate

command: terminate | reanimate | stack | <customCommand>

Result
If the given task has any uncompleted partition requests which are in a zombie
state, the requests will be reset, allowing them to resume execution. If the given
task is an unpartitioned task, the zombie task will be marked as terminated.

Certification Commands

Certify

The certify command creates a manager or application certification. The certification is generated using the install-
ation's default settings / parameters. This command is primarily used for testing purposes.

Syntax certify [managerName | application]

Examples > certify Catherine.Simmons

Result Generates a manager certification for manager Catherine Simmons

The command syntax help indicates that this command can generate an application owner certification when an
application is specified as a command argument, but this feature has not been updated as the certification com-
ponents of the product have changed over time. As a result, the application argument for this command is not cur-
rently usable.

IIQ Console Commands

SailPoint IdentityIQ Console 26

CancelCertify

This command is not recommended. Use the delete command to remove certification objects.

The cancelCertify command can be used to delete a certification object from the system.

Syntax cancelCertify <certificationName or ID>

Examples > cancelCertify "Manager Access Review for William Moore"

Result
Delete the named certification (the command fails if more than one certification
object with the same name exists)

ArchiveCertification

The archiveCertification command archives the specified certification (creates a certificationArchive object) and
deletes it as an active certification.

Syntax archiveCertification <certificationName or ID>

Examples > archiveCertification "Manager Access Review for William Moore"

Result Creates a certificationArchive object and delete the certification from the system

DecompressCertification

The decompressCertification command retrieves the named certificationArchive object and prints it to the console
(stdout) in the Certification object's XML format.

Syntax decompressCertification <certificationArchiveName or ID>

Examples
> decompressCertification "Manager Access Review for William

Moore"

Result
Prints the named certification archive to the console (stdout) in certification XML
format

CertificationPhase

The certificationPhase command transitions the specified certification to the specified phase. This command fails if
the certification is on or past the requested phase.

The certification is advanced to the next enabled phase after the requested phase if the specified phase is not enabled
for the certification. For example, if a certification has neither a Challenge nor a Remediation phase enabled but the
command requests that it be advanced to the Challenge phase, the certification is advanced to the End phase.

The certification is sequentially advanced through all enabled phases until it reaches or passes the requested phase.
Any business logic that should occur during each phase transition (period enter rules, period end rules, etc.) is
executed during the phase advancement.

IIQ Console Commands

SailPoint IdentityIQ Console 27

Syntax certificationPhase <certificationName or ID> [Challenge | Remediation | End]

Examples > certificationPhase "Catherine Simmons Access Review" Challenge

Result

Advances the "Catherine Simmons Access Review" certification from its current
phase (Active) to the Challenge phase. If this review is not configured for a Chal-
lenge phase, it is transitioned to the Remediation or End phase (depending on con-
figuration).

Group Commands

RefreshFactories

The refreshFactories command can be specified with no arguments to refresh all group factories or with a specific
GroupFactory name. Refreshing the group factory means identifying the group values that define each of the groups
(or GroupDefinition objects). It does not refresh the list of Identities that make up each group or the statistics gathered
for each group – just the list of groups themselves.

Syntax refreshFactories [<factorname or ID>]

Examples > refreshFactories

Result
Refreshes the GroupDefinition list associated with each GroupFactory in the sys-
tem

RefreshGroups

The refreshGroups command refreshes the group indexes for all groups or for the specified group named as a com-
mand argument. The group indexes are collections of statistics for identities that are part of the group. The statistics
include number of members, number of certifications due for certification owners in the group, number of certifications
owned and completed on time by members of the group, and risk score information for members of the group.
RefreshGroups only applies to GroupDefinitions that are indexed (attribute indexed="True").

Syntax refreshGroups [groupname or ID]

Examples > refreshGroups

Result Refreshes index information for all indexed groups

ShowGroup

The showGroup command shows the membership (Identities) of the group named as an argument to the command.

Syntax showGroup <groupname or ID>

Examples > showGroup Finance

Result Lists all Identities who are members of the Finance group.

IIQ Console Commands

SailPoint IdentityIQ Console 28

Workflow Commands

Workflow

Theworkflow command launches the workflow specified as a command parameter. Input variables must be entered
in a variable file to get passed to the workflow. A variable file is specified as an XML Map. The file name is then also
passed as a parameter to the command. When the workflow is successfully launched, the XML for the workflowCase
is printed to the console (stdout).

Syntax workflow <workflowname or ID> [varfile]

Examples > workflow "LCM Provisioning" c:\data\provFile.xml

Result
Runs the LCM Provisioning workflow, passing its input variables through the file
c:\data\provFile.xml

The varfile should contain an attributes map like the example shown below. This example map passes an identity
name and a provisioning plan object to the workflow.

<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE Attributes PUBLIC "sailpoint.dtd" "sailpoint.dtd">
<Attributes>
 <Map>
 <entry key="identityName" value="Adam.Kennedy"/>
 <entry key="plan">
 <value>
 <ProvisioningPlan>
 <AccountRequest application="IIQ" nativeIdentity="Adam.Kennedy" op="Modify">
 <AttributeRequest name="assignedRoles" op="Add" value="PRISM User">
 <Attributes>
 <Map>
 <entry key="comments" value="req A"/>
 </Map>
 </Attributes>
 </AttributeRequest>
 </AccountRequest>
 <AccountRequest application="IIQ" nativeIdentity="ABC_12345" op="Modify">
 <AttributeRequest name="assignedRoles" op="Add" value="Test Role B2">
 <Attributes>
 <Map>
 <entry key="comments" value="req B"/>
 </Map>
 </Attributes>
 </AttributeRequest>
 </AccountRequest>
 </ProvisioningPlan>
 </value>
 </entry>
 </Map>
</Attributes>

IIQ Console Commands

SailPoint IdentityIQ Console 29

Validate

The validate command can validate a workflow or a rule. Input variables must be entered in the variable file to be
passed to a workflow or rule. The variable file is specified as an XML map and the file name is passed as a parameter
to the command. Validation errors are printed to the console (stdout).

Syntax validate <rule or workflow name or ID> [varfile]

Examples > validate "LCM Provisioning" c:\data\provFile.xml

Result
Validates the LCM Provisioning workflow, passes the input variables through
c:\data\provFile.xml, and displays any validation errors

SeeWorkflow for an example of the varfile format.

Wftest

Thewftest command is used to one or more workflows. TheWorkflowTestSuite can be the name of a Work-
flowTestSuite object or a file containing one.

Syntax wftestWorkFlowTestSuite name | filename

Examples > wftest c:\test\workflowTest.xml name | c:\test\workflowTestOut.xml

Result Tests the workflows and sends the outcome to the workflowTestOut file.

WorkItem

TheworkItem command displays certain details (Owner, Create Date, Expiration Date) for the specified workItem.

This command requires the workItem ID or name value as an input parameter. The workItem ID value (a long hexa-
decimal number) is obtained using the IdentityIQ console's list workItem command. The workItem Name is not the
descriptive name for the workitem, it is a numeric value assigned when the workItem is created. The value is found in
the XML representation of each workItem through the Debug pages.

Syntax workItem <workItemID or Name>

Examples > workItem 40288f0132b155ad0132b58a4e3f018e

Result Displays the Owner, Created Date, and Expiration Date for the specified workItem

Approve

The approve command sets the specified workItem to a Finished state (indicating that it was approved), adds any spe-
cified completion comments to the workItem, and submits the workItem to the workflower to move it to the next appro-
priate stage.

This command requires the workItem ID or name value as an input parameter. You can obtain the workItem ID value
(a long hexadecimal number) using the IdentityIQ console list workItem command. The workItem Name is not the

IIQ Console Commands

SailPoint IdentityIQ Console 30

descriptive name for the workitem, it is a numeric value assigned when the workItem is created. The value is found in
the XML representation of each workItem through the Debug pages.

Syntax approve <workItemID or Name> [comments]

Examples > approve 40288f0132b155ad0132b58a4e3f018e "Access approved"

Result
Marks the specified workItem as approved, adds the comment "Access approved"
to the workItem's completion comments, and submits the workItem for evaluation
of the next appropriate step (another approval, provisioning, etc.)

Reject

The reject command sets the specified workItem to a Rejected state, adds any specified completion comments to the
workItem, and submits the workItem to the workflower to move it to the next appropriate stage.

This command requires the workItem ID or name value as an input parameter. The workItem ID value (a long hexa-
decimal number) is obtained using the IdentityIQ console's list workItem command. The workItem Name is not the
descriptive name for the workitem, it is a numeric value assigned when the workItem is created. The value is found in
the XML representation of each workItem through the Debug pages.

Syntax reject <workItemID or name> [comments]

Examples
> reject 40288f0132b155ad0132b58a4e3f018e "Access conflicts with

AP data entry entitlement"

Result

Marks the specified workItem as rejected, adds the comment "Access conflicts
with AP data entry entitlement" to the workItem's completion comments, and sub-
mits the workItem for evaluation of the next appropriate step (another approval,
etc.)

Test Commands

Rule

The rule command runs a rule defined in the system. The rule to run is specified as a command parameter. If any
input variables must be passed to the rule, they must be entered in a variable file, specified as an XML Map. The file
name is then also passed as a parameter to the command.

This command can be used for testing or executing existing system rules. It can also be used to run any BeanShell
code snippet against the IdentityIQ database. The code is created as a rule and loaded into the system and then
executed from the console. Support uses rules like this for data cleanup.

Syntax rule <rulename or ID> [varfile]

Examples > rule "Check Password Policy" c:\data\pwdParams.xml

IIQ Console Commands

SailPoint IdentityIQ Console 31

Result
Runs the Check Password Policy rule, passing its input variables through the file
c:\data\pwdParams.xml

Parse

The parse command validates an XML file. If it is in valid form and its tags match the IdentityIQ DTD, it runs suc-
cessfully and no information is printed to the console (stdout). If errors are encountered, a runtimeException is printed
to the console describing the error.

Syntax parse filename

Examples > parse c:\data\newWorkflow.xml

Result
Validates the XML in the file c:\data\newWorkflow.xml and reports any errors to the
console

SQL

The sql command executes a SQL statement. It can execute SQL specified inline with the command or it can read the
SQL from a file. Only one SQL statement can be executed at a time. The output can be printed to the console (stdout)
or redirected to a file. Select, update, and delete SQL statements can be executed. Update and delete actions cannot
be undone.

Syntax sql sqlStatement | -f inputFileName

Examples
> sql "select * from sptr_identity" > c:\data\Identities.dat

> sql -f c:\sql\SelectIdentities.sql

Result

The first example executes the specified select statement and writes the results to
c:\data\Identities.dat.

The second example reads the SQL from c:\sql\SelectIdentities.sql, prints the SQL
to the console (stdout), and displays the query results to the console (stdout).

Warp

Thewarp command parses an XML file to create an object and then displays the object's XML representation in the
console (stdout). If it is not in valid form or its tags do not match the IdentityIQ DTD, a runtimeException is printed to
the console describing the error.

Syntax warp filename

Examples > warp c:\data\newWorkflow.xml

Result
Parses the XML in the file c:\data\newWorkflow.xml and displays the XML rep-
resentation of the object in the console, or reports any errors to the console.

IIQ Console Commands

SailPoint IdentityIQ Console 32

Notify

The notify command sends an email message to the specified identity using the email template specified. This com-
mand does not accept any other parameters that can be passed to the template, so it can only be used for templates
whose messages do not rely on variable substitutions to build the content. This command is most often used for test-
ing purposes.

The toAddress argument can contain an identity name or ID or an email address. If it contains an identity name or ID,
the email address is retrieved from the identity record.

Syntax notify <emailTemplateName or ID> toAddress

Examples > notify Certification Alan.Bradley

Result
Sends an email to Alan.Bradley's email address using the Certification email tem-
plate.

Authenticate

The authenticate command authenticates a username and password against the pass-through authentication source
or the internal IdentityIQ records. No results are returned if the values are authenticated. If the password is incorrect or
the user name cannot be found, an error message is displayed in the console (stdout).

Syntax authenticate usernamepassword

Examples > authenticate Alan.Bradley s53n659#@5a!

Result
Authenticates username Alan.Bradley and the provided password against the
authentication source (pass-through or internal)

SimulateHistory

The simulateHistory command is used to generate a fake, randomly-generated group index or identity score history
for one or more groups or identities. Used for generating test data in a development environment.

Syntax simulateHistory Identity|Group <groupName or ID>|<identityName or ID>|all

Examples
> simulateHistory Identity all

> simulateHistory Group Finance

Result
First example generates fake risk scorecards for all identities in the system.

Second example generates fake groupIndex information for the Finance group.

Expire

IIQ Console Commands

SailPoint IdentityIQ Console 33

The expire command immediately expires a work item that has an expiration configured. If the work item is type
Event, it also pushes the event forward with the workflow.

Syntax expire <id>

Examples > expire [sample id]

Result The work item immediately expires.

UpdateHql

The updateHql command allows you to run a Hibernate query language (Hql) command to update an object in the
IIQ database.

Syntax updateHql < statement>

Examples
> update Identity set type = 'employee' when name = 'Aaron.Nich-

ols'

Result
The given objects are changed in the database. The IIQ console returns a count of
rows that were updated.

CloudAccess

Use the cloudAccess command to manage and test the Cloud Access Management (CAM) integration. This com-
mand requires a subcommand.

Note: CAM needs to be enabled for these commands to be successful. If CAM is not enabled, a
message displays stating, "cloudAccess requires CAM feature to be enabled." After importing
init-cam.xml, commands should run as expected without requiring a restart.

Syntax:

cloudAccess subcommand

Get

The get subcommand is used to get information from the configured cloudAccess server.

Syntax: cloudAccess get subcommand

Get Subcommands:

l healthStatus

Use cloudAccess get healthStatus to get the health status of the Cloud Access server

IIQ Console Commands

SailPoint IdentityIQ Console 34

Example:

> cloudAccess get healthStatus

l role -nativeId

Use cloudAccess get role -nativeId <id> [-cspType <cspType>] to get the CAM role from the Cloud
Access server

Example:

> cloudAccess get role -nativeId arn:aws:iam::332420946437:role/823649857953_

Admin -cspType AWS

l group -nativeId

Use cloudAccess get group -nativeId <id> [-idpType <idpType>] to get the CAM group from the Cloud
Access server

Example:

> cloudAccess get group -nativeId f85e95c6-37d9-4a41-ba70-447e77b0470e -idpType

AZURE

Results: As described above. When a group is not found, returns the message "No results." When get role finds no
results, the returned JSON includes the 404 message. When invalid input is given for the required -idpType or -
cspType, a list of valid values displays.

Event

The event subcommand is used to get event subscriber information from the configured cloudAccess server.

Syntax: cloudAccess event subscribers [list] [delete <subscriberId>]

Usage:

Use cloudAccess event subscribers list to list the CAM Event Subscribers.

Use cloudAccess event subscribers delete <subscriberId> to delete the specified CAM Event Subscriber.

Results:

Displays a list of CAM event subscribers with columns for subscriberId, groupId, and active (status).

Plugin Commands
SeeWorking with Plugins from the IdentityIQ Console in the Plugins Guide.

IIQ Console Commands

SailPoint IdentityIQ Console 35

Recommender Commands
Use the following recommender commands to manage and test recommendations. This command may be truncated
to reco.

Reco list

The reco list command lists all recommender definitions.

Syntax reco list

Examples > reco list

Result
Lists all recommender definitions, along with names and statuses (In Use, Avail-
able, Unavailable). If no recommender definitions are available, a message dis-
plays "No RecommenderDefinitions Installed."

Reco use

The reco use command lets you select the active recommender. This should match your System Configuration.

Syntax reco use <name>

Examples

> reco use [recommender_name]

Note: If the recommender name contains whitespaces, be
sure to include those in the Recommender_Name.

Result
The active recommender is set and displayed here. If you enter a recommender
name that does not exist, a message displays "Unable to find recommender with id
or name: <name>."

The reco use -- command clears out the recommender selection and displays the message "Clearing recommender
selection."

Reco run

The reco run command fetches recommendations for a given identity or a given work item. If these commands are
run when a recommender is not in use, a message displays "No recommender is selected. Use 'recommender use
<name>' to make selection."

Syntax

reco run -id <identId> -ent <entId>

reco run [-update] -workitem <workItemId>

reco run [-bulk] -requestfile <requestfile path>

IIQ Console Commands

SailPoint IdentityIQ Console 36

reco run [-bulk] -jsonrequest <list of requests as JSON string>

Results

Use recommender run -id <identId> -ent <entId> to get the recommendation for the given identity.

Use recommender run [-update] -workitem <workItemId> to get the recommendations for the given
workitem.

Use recommender run [-bulk] -requestfile <requestfile path> to get the recommendations for the
requests(s).

Use recommender run [-bulk] -jsonrequest <list of requests as JSON string> to get the recom-
mendations for the request(s).

Use recommender run -recommendAccess -id <identId> to get the recommendations for the request(s).

Use recommender run -catalog <translationKey> [-catalogType <recommender | accessRe-

commender>]] [-languageTag <languageTag>] to get the translation using the given locale language tag.
The default is the server locale.

Options

Options include bulk, update, requestfile, and -jsonrequest:

• -bulk performs as a bulk request. If this option is specified, all recommender requests will be combined into a single
bulk recommender request. If this option is omitted, each request will be submitted individually.

• -update updates the object with the recommendation.

• -requestfile returns a JSON file containing a list of RecommendationRequests.

• -jsonrequest to use a JSON string to list requests

Other Commands

Rolerelationship

The rolerelationship command lets you view, search, and rebuild relationships between roles and their entitlement
profiles, required roles, inherited roles, and permitted roles.

Syntax

This command requires a subcommand to specify the particular action you want the command to take.

Details about subcommands and their options are provided below; the general syntax for running the command with a
subcommand is:

rolerelationship subcommand

IIQ Console Commands

SailPoint IdentityIQ Console 37

Help

This subcommand returns help details about other subcommands and their usage details.

Syntax: rolerelationship help

Index

This subcommand builds Bundle Profile Relation records, based on the provided role name, ID or type. Bundle Profile
Relation records provide a snapshot-level view of a role and its relationships to entitlements, required roles, inherited
roles, permitted roles, and managed attributes. This command runs the Refresh Role-Entitlement Associations task,
with the filters that are specified in the command syntax applied.

Note that the only function currently supported is the build function, which must be included in the command syntax.

Syntax: rolerelationship index [function] [filter]

Two filter options can be used with the index subcommand. Wildcards are not supported in these filters.

l role_name : The role name or ID. Role names that include a space must be enclosed in single quotes (for
example, 'Payroll Approver').

l role_type : The role type, such as business or it

Examples

rolerelationship index build -role_name 'Payroll Approver'

rolerelationship index build -role_type it

rolerelationship index build -role_name 'Tax Manager' -role_type business

Search

This subcommand searches for roles using search filters and parameters. You can use a variety of filters and fixed-
value parameters to search for roles and role relationships. The -l option returns results in a list view, suppressing enti-
tlement and status information in the results, so that relationship data is not displayed.

Syntax:rolerelationship search [filter] [-l]

Filters for the Search Subcommand

Use filters to search for roles based on a variety of criteria. Filters can be combined with fixed values (which are
described in a later table) to refine your searches.

applications

Syntax is -app <app_name_or_id> or -app_status <app_status>.

- app <app_name_or_id> returns all roles that have entitlements from the provided application.

IIQ Console Commands

SailPoint IdentityIQ Console 38

-app_status <app_status> returns all roles that have entitlements from the provided application with this
type of status.

roles

Syntax is -role_name <role_name_or_id> or -role_type <role_type>

-role_name <role_name_or_id> returns roles matching the provided role name or id.

-role_type <role_type> returns roles of this type. Options are it, business, assignOrDetect, rap-
idSetupBirthright, or any custom role types that are requestable.

Roles supports wildcard search using %

entitlements

Syntax is -ent_attr <attribute> or -ent_value <value>

-ent_attr <attribute> filters by type of profile = entitlement. Options are group, groupmbr, andmem-
berOf.

-ent_value <value> filters by type of profile = entitlement and returns only entitlements that contain this
value.

Entitlements supports wildcard search using %

permissions

Syntax is -perm_right <right> or -perm_target <target>

-perm_right <right> filters by type of profile = permission. Options are create, delete, execute, read,
and update.

-perm_target <target> filter by type of profile = permission (options are targets defined on entitlement per-
missions).

Permissions supports wildcard search using %

relationships

Syntax is -inheritance <inheritance> or -rel2role <relationship_to_role>

-inheritance <inheritance> filters by relationship and inheritance. Options are SELF_ONLY which
defines privileges derived from role only (directly), or INHERITED_ONLY which defines privileges derived only
through inheritance.

-rel2role <relationship_to_role> filters by relationship of the profile to the role. Options are:

IIQ Console Commands

SailPoint IdentityIQ Console 39

l ANY ignores all relationships and displays all

l SELF_ONLY only shows roles that have the entitlements / permissions directly on them

l SELF_AND_SPECIFIC_RELATED shows roles that have the entitlements / permissions directly on
it OR a specific relationship (inherited, permitted, required).

l ALL_RELATED_ONLY only shows roles that have the entitlement / permission through a specific
relationship (relationship cannot be selected in additional filters), not on the role directly, only via
derived roles.

l SPECIFIC_RELATED_ONLY only shows roles that have the entitlement / permission through a
specific relationship (relationship can be selected in additional filters), not on the role itself.

l The -rel2role options [ANY | SELF_ONLY | ALL_RELATED_ONLY] are incompatible with spe-
cified [inheritance | req_perm_type] filters other than ANY.

relationship types

Syntax is -ent_perm_type <relation_type>

Filter by type of entitlement within role. Options are entitlement or permission.

Value of permission is incompatible with ent_attr and ent_value criteria.

Value of entitlement is incompatible with perm_right and perm_target criteria.

required or permission

Syntax is -req_perm_type <req_perm_type>

Filter by required or permitted. This filter is only applicable when the -rel2role fixed value is set to SELF_
AND_SPECIFIC_RELATED or SPECIFIC_RELATED_ONLY

The options for -req_perm_type are:

l ANY – required or permitted role

l REQUIRED_ONLY – required only

l PERMITTED_ONLY – permitted only

l NEITHER – neither required nor permitted

Fixed Values for the Search Subcommand

IIQ Console Commands

SailPoint IdentityIQ Console 40

Fixed value options in the Search subcommand let you search for roles using specific values. Fixed values can be
combined with filters to refine your searches.

IIQ Console Commands

SailPoint IdentityIQ Console 41

<rel2role> (relationship to role)

l ANY

l DIRECT_ONLY – only show where privilege is derived directly from the role

l DIRECT_SELECTED_INDIRECT – show direct relationships, and any specified indirect relationships

l ALL_INDIRECT – only show where privilege is derived indirectly from other roles

l SELECTED_INDIRECT – only show where privilege is derived indirectly from selected other roles, using
entitlement / permission filters

<relation_type>

l ANY

l ENTITLEMENT – entitlements only

l PERMISSION – permissions only

<inheritance>

l ANY

l SELF_ONLY – privileges derived from the role only

l INHERITED_ONLY – privilege derived from inheritance only

<app_status>

l APP_NOTFOUND – application is not found, role is orphaned

l ENT_NOTFOUND – entitlement not found

l OK – application exists

<req_perm_type>

l ANY

l REQUIRED_ONLY – only Required is set to true

l PERMITTED_ONLY – only Permitted is set to true

IIQ Console Commands

SailPoint IdentityIQ Console 42

l NEITHER – neither Required nor Permitted are set to true

l BOTH – both Required and Permitted are set to true

Notes on the Search Subcommand

l The <rel2role> (relationship_to_role) options [ANY | DIRECT_ONLY | ALL_INDIRECT] are incompatible
with specified [inheritance | req_perm_type] filters other than ANY

l ent_perm_type value of permission is incompatible with ent_attr and ent_value criteria

l ent_perm_type value of entitlement is incompatible with perm_right and perm_target criteria

l role_name, ent_attr, ent_value, perm_right,and perm_target support wildcard search with %

Examples

rolerelationship search

Returns usage / help information for the Search subcommand.

rolerelationship search -app ExampleRoleApp

Returns all roles that have entitlements from the ExampleRoleApp application, indirectly or directly.

rolerelationship search -app ExampleRoleApp -role_name 'MyCompany IT Role'

Returns all direct entitlements in the ExampleRoleApp for the MyCompany IT Role.

rolerelationship search -app ExampleRoleApp -role_type business

Returns all roles of type business that have entitlements in the ExampleRoleApp application, indirectly or directly

rolerelationship search -app Oracle_DB_oasis -ent_perm_type permission -perm_target

AP_Logins -perm_right create

Returns roles in the Oracle_DB_oasis app that have create permissions on the AP_Logins target.

Show

This subcommand returns details about entitlements and status for the requested role. A role name or ID must be
provided as an argument. If there are any spaces in the role name, the role name must be enclosed in single quotes
(for example, 'Payroll Approver'). Wildcards are not supported for the show subcommand.

Syntax: rolerelationship show [Role Name or ID] [-l]

The -l option returns results in a list view, suppressing entitlement and status information in the results, so that rela-
tionship data is not displayed.

Examples

IIQ Console Commands

SailPoint IdentityIQ Console 43

rolerelationship show -role_name 'Payroll Approver'

rolerelationship show -role_name TaxManager -l

rolerelationship show -role_name 7f0000017e731ebe817e73cf168a0398

Provision

The provision command processes the specified provisioning plan for the specified identity but does not save the
information. This is used to test a connector or to test a provisioning plan. Errors are reported to the console. If the pro-
visioning action would succeed, nothing is reported to the console.

Syntax Provision <identityname or ID> provisioningPlanFfilename

Examples > provision Adam.Kennedy c:\data\provFile.xml

Result
Tests the provisioning plan contained in c:\data\provFile.xml against Identity
Adam.Kennedy and reports any exceptions to the console

The provisioning plan file should contain a provisioning plan in XML format. For example:

<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE ProvisioningPlan PUBLIC "sailpoint.dtd" "sailpoint.dtd">
<ProvisioningPlan>
 <AccountRequest application="IIQ" nativeIdentity="ABC_12345" op="Modify">
 <AttributeRequest name="assignedRoles" op="Add" value="Test Role B1">
 <Attributes>
 <Map>
 <entry key="comments" value="req A"/>
 </Map>
 </Attributes>
 </AttributeRequest>
 </AccountRequest>
 <AccountRequest application="IIQ" nativeIdentity="ABC_12345" op="Modify">
 <AttributeRequest name="assignedRoles" op="Add" value="Test Role B2">
 <Attributes>
 <Map>
 <entry key="comments" value="req B"/>
 </Map>
 </Attributes>
 </AttributeRequest>
 </AccountRequest>
</ProvisioningPlan>

Lock

The lock command obtains a persistence lock on an object. The object's class and ID or name must be specified. By
default, the lock is issued to the username Console, but a different username can be specified in the command's lock-
Name parameter. The lock automatically expires after 5 minutes.

IIQ Console Commands

SailPoint IdentityIQ Console 44

Syntax lock classname <objectID or name> [lockName]

Examples > lock identity John.Smith

Result Obtains a persistence lock for Console on the identity record for John.Smith

Identity objects are the only objects that can be locked. Attempts to specify a different object type in this command res-
ults in a syntax error exception.

Note: The lock command is not supported for Access History.

Unlock

The unlock command releases the lock on an object. The object's class and ID or name must be specified. If the
object is not locked, the message "Object is not locked" is displayed. If it is locked, the lock is released and the mes-
sage "Lock has been broken" is displayed.

Syntax unlock classname <objectID or name>

Examples > unlock identity John.Smith

Result Breaks the lock on the identity record for John.Smith

Note: The unlock command is not supported for Access History.

ShowLock

The showLock command lists the lock owner, locked date / time, and lock expiration date / time for a locked object.
The object's class and ID or name must be specified to view its lock information. The message Object is not locked is
displayed if the object is not currently locked. If the lock has expired, the lock information is shown but is prefaced with
the message Lock has expired.

Syntax showLock classname <objectID or name>

Examples > showLock identity John.Smith

Result
Displays lock information (owner, date / time, expiration date / time) on the identity
record for John.Smith or displays Object is not locked.

Oconfig

The oconfig command list all extended attributes defined for each class that supports extended attributes. The list
indicates the extended attribute numbers and corresponding attribute names on each class. Identity extended attrib-
utes which link to other Identities are stored separately in extended identity attribute fields, so those are listed in a sep-
arate Extended Identity Attributes sub-list under the Identity ObjectConfig. The objectConfig detail displays No
attributes defined if no extended attributes are defined for a given class. An Object not found message is displayed if

IIQ Console Commands

SailPoint IdentityIQ Console 45

no objectConfig exists for the class.

Syntax oconfig

Examples > oconfig

Result

Displays each objectConfig and its extended attributes, numbered according to the
extended attribute number that corresponds to each
ObjectConfig: Identity
1 region
2 Department
3 location
4 empId
5 jobtitle
Extended Identity Attributes:
1 regionOwner
2 locationOwner
ObjectConfig: Link
1 inactive
2 service
3 privileged
4 lastLogin
ObjectConfig: Application
1 DeployDate
ObjectConfig: Bundle
No attributes defined
ObjectConfig: ManagedAttribute
1 authorization
2 email
3 rank
ObjectConfig: CertificationItem
Object not found

TextSearch

The textsearch command enables command-line execution of full text searches as they are done through the LCM full
text search. The class name must be either ManagedAttribute or Bundle, since those are the only indexed classes.
This command searches for the specified string in the fullTextIndex created for the specified class and returns a map
representation of the objects in which the string is found. If a filter attribute and value are specified, the search is fur-
ther constrained to entries that correspond to that attribute name-value pair. The filter is always treated as an equals
operation. The filterName must be an attribute that is indexed in the FullTextIndex object for the specified class.

IIQ Console Commands

SailPoint IdentityIQ Console 46

Syntax textsearch classname string [filterName filterValue]

Examples > textsearch Bundle manager type business

Result
Returns a map of data values for each Bundle (role) of type=business that contains
the string manager in any analyzed field. Analyzed fields in the Bundle FullTex-
tIndex marked as analyzed=true.

Search

The search command looks up an object based on specified criteria, similar to a simplified SQL / HQL interface. A
single class name is specified with a list of the attributes to display from that class. Following the where keyword,
search filters can be specified in name value sets. All filter values are used in a like comparison. The record is returned
if the record's field value contains the specified value string.

Syntax
search className [attributeName…] where [filter…]

filter: attributeNamevalue

Examples > search identity name manager.name region where name kat

Result

Returns the name, manager's name, and region for all identities whose name con-
tains the string kat.

For example, records for Katherine.Jones, John.Kato, and Tammy.Erkatz are
returned by this search.

Impact

The impact command reads an XML file containing a Bundle (role) object and performs role impact analysis for the
role. The command parses the XML to its object form. Impact analysis is not performed if that object is not a Bundle.

Syntax impact filename

Examples > impact c:\data\ContractorRole.xml

Result
Performs role impact analysis for the Bundle object represented by the XML in
c:\data\ContractorRole.xml

Event

The event command schedules a workflow to run, passing in an Identity name as an argument. By default, the work-
flow is scheduled 1 second after the command is issued, but a delay can be specified in seconds as a command argu-
ment.

Syntax event <identityName or ID> <workflowName or ID> [seconds]

Examples > event Catherine.Simmons "Identity Refresh" 60

IIQ Console Commands

SailPoint IdentityIQ Console 47

Result
Schedules an Identity Refresh workflow to run for Catherine.Simmons 60 seconds
after the command is issued.

ConnectorDebug

The connectorDebug command is used to test a connector or troubleshoot application aggregation issues. Its
method parameters determine what is tested and how.

Syntax connectorDebug <applicationName or ID> <method> [methodArgs…]

The specific syntax for each of the "methods" is shown below.

Method test

Purpose
Test whether a connection can be established with the application through its con-
nector

Syntax connectorDebug <applicationName or ID> test

Example > connectorDebug ADAM test

Result Returns "Test Succeeded" on success, reports an error in the console on failure.

Method iterate

Purpose Iterate through the application's account or group records

Syntax
connectorDebug <applicationName or ID> iterate [account|group (default =
account)] [-q (for "quiet mode")]

Example
> connectorDebug ADAM iterate -q
> connectorDebug ADAM iterate account

Result

First example iterates all account records natively in the ADAM application and
returns only the count of iterated objects and how many milliseconds it took to run.

Second example iterates account records natively in the ADAM application and
returns a ResourceObject representation of each account to the console.

Method get

Purpose
Test whether a connection can be established with the application through its con-
nector

Syntax connectorDebug <applicationName or ID> get account|group nativeIdentity

Example > connectorDebug ADAM get account "CN=Willie.Gomez,DC=sailpoint,DC=com"

Result
Returns the XML representation of the ResourceObject for that nativeIdentity on the
application

IIQ Console Commands

SailPoint IdentityIQ Console 48

Method auth

Purpose
Test pass-through authentication against the specified application (The fea-
turesString in its application definition must contain AUTHENTICATION.)

Syntax connectorDebug <applicationName or ID> auth usernamepassword

Example > connectorDebug ADAM auth administrator Pa$$w0rd

Result
Returns "Authentication Successful" when user is authenticated or displays the
exception message to the console if authentication fails.

Encrypt

The encrypt command is used to encrypt a string. This command is generally only useful for test purposes. It can gen-
erate an encrypted password which can be passed in other console commands, for example, the authenticate com-
mand.

Syntax encrypt string

Examples > encrypt MyPa$$w0rd

Result Returns the encrypted equivalent for the specified string.

HQL

The hql command executes a search based on a Hibernate Query Language statement. The command syntax
matches the SQL command's syntax, but this command can select but not update data.

Syntax hql hqlStatement | -f inputFileName

Examples

> hql "select name, manager.name from Identity" > c:\data\Iden-

tities.dat

> hql -f c:\hql\SelectIdentities.hql

Result

The first example executes the specified HQL select statement and writes the res-
ults to the file c:\data\Identities.dat.

The second example reads the HQL from the file c:\hql\SelectIdentities.hql, prints
the HQL to the console (stdout), and displays the query results to the console
(stdout).

Date

The date command shows the current date and time for the application server or the date and time value for a spe-
cified utime (universal time) value.

Syntax date [utime]

IIQ Console Commands

SailPoint IdentityIQ Console 49

Examples
> date

> date 1338820492484

Result

The first example displays the command syntax and the current date / time and cur-
rent UTIME value.

The second example returns the date / time value for the specified UTIME value.

Shell

The shell command escapes out to the command line and runs the command specified.

Note: This command does not work properly in a Windows environment, but does work in UNIX.

Syntax shell commandLine

Examples > shell ls

Result
Lists the contents of the UNIX file system directory from which the console was
run.

Meter

Themeter command toggles metering on or off. While metering is on, the console reports some timing statistics for
each command executed. Meter information is displayed after the results of each command as it is executed.

Syntax meter

Examples > meter

Result

Toggles metering on and off. When turned on, all subsequently issued commands
report timing statistics.

Meter information displayed includes: number of calls, total number of mil-
liseconds, maximum time for one call, minimum time for one call, and average time
per call.

Compress

The compress command is designed to compress the contents of a file to a string that can be included within an XML
element. It compresses the file and then encodes it to Base64 and writes that text to the specified output file. This res-
ultant file can then be used in an XML element stored in the database. This has limited usefulness within IdentityIQ
since no part of the application is designed to read these compressed strings, but custom rules can be used to pro-
cess them as needed or they can simply be stored in the database to be retrieved and uncompressed for use by an
external application at a later time.

IIQ Console Commands

SailPoint IdentityIQ Console 50

Syntax compress inputFilenameoutputFilename

Examples > compress file1.txt file2.txt

Result
Compresses the contents of file1.txt, encodes that into Base64, and writes the res-
ultant text string to file2.txt

Uncompress

The uncompress command functions in exactly the opposite way of the compress command, taking a compressed,
Base64-encoded file and returning its uncompressed format.

Syntax uncompress inputFilenameoutputFilename

Examples > compress file2.txt file3.txt

Result
Reverses the compressing process to return the original, uncompressed version of
the text, writing that to the file file3.txt.

ClearEmailQueue

The clearEmailQueue command deletes all queued but unsent email messages from the IdentityIQ email queue.
This includes any new messages that have not yet been sent and messages that have encountered problems that pre-
vented successful delivery.

Syntax clearEmailQueue

Examples > clearEmailQueue

Result Deletes all unsent emails from the email queue.

ClearCache

The clearCache command removes objects from the Hibernate object cache. This can be used when debugging
Hibernate issues.

Syntax clearCache

Examples > clearCache

Result Clears the Hibernate object cache.

Service

The service command provides information about the background services running in the console. The services
include:

IIQ Console Commands

SailPoint IdentityIQ Console 51

l Cache – periodically refreshes cached objects

l SMListener – listens for change events from PE2 change interceptors

l ResourceEvent – looks for change events added to a queue and processes them

l Heartbeat – maintains a Server object for each IdentityIQ instance and periodically updates it
so you can tell if an instance is still running

l Task – the Quartz task scheduler

l Request – the IdentityIQ request processor – stopping the Request service also stops par-
titioned tasks

Syntax service list | start | stop | run

Examples > service list

Result Lists background services running in the console.

Access History Console Commands

Note: Not all console commands support Access History. See Console Commands that do
not Support Access History in the Access History Guide.

AccessHistory

Entering accessHistory with no additional supplied subcommands returns an error and displays usage information.

Syntax: This command requires a subcommand to specify the particular action you want the command to take.
Details about subcommands and their options are provided below; the general syntax for running the command with a
subcommand is:

accessHistory <subcommand>

Help

The help subcommand returns help details about other subcommands and their usage details.

Syntax:

accessHistory help

CreateEvent

IIQ Console Commands

SailPoint IdentityIQ Console 52

The createEvent subcommand pulls attribute information for the given object and displays the JSON for the
ExportEvent. The accessHistory createEvent command may be abbreviated ac c.

The output to the screen is the attribute information for the type being created, i.e. the identity, application, bundle,
managed attribute, certification, identity request, or work item attributes meet the attributes listed in the standard
accessHistoryExport.xml file, which currently include empID, type, lastname, password, department, location, and
region.

Identity

Syntax:

accessHistory createEvent <identity> <identity name_or_id>

Example:

> ac c identity ac10293181aa1e5a8181aa8eec400150

Application

Syntax:

accessHistory createEvent <application> <application name_or_id>

Example:

> ac c application ac10293181aa1bff8181aa8d667c0368

Bundle

Syntax:

accessHistory createEvent <bundle> <bundle name_or_id>

Example:

> ac c bundle ac10293181aa1bff8181aa8d6e6c038d

ManagedAttribute

Syntax:

accessHistory createEvent <managedattribute> <managedattribute_or_id>

Example:

> ac c managedattribute ac10293181aa1bff8181aa8d7c370497

Certification

Syntax:

IIQ Console Commands

SailPoint IdentityIQ Console 53

accessHistory createEvent <certification> <certification_or_id>

Example:

> ac c certification ac10293181aa10168181aad16a4d1629

Identity Request

Syntax:

accessHistory createEvent <identityrequest> <identityrequest_or_id>

Example:

> ac c identityrequest ac10293181aa10168181aad809fa199f

Work Item

Syntax:

accessHistory createEvent <workitem> <workitem_or_id>

Example:

> ac c workitem ac10293181aa1e5a8181aa9338902231

PostEvent

The postEvent subcommand should be used in conjunction with the readEvent command. The accessHistory
postEvent command may be abbreviated ac po.

After posting an event, a status of Success is returned or a message displays on the console confirming that the event
failed to post.

Identity

Syntax:

accessHistory postEvent <identity> <identity name_or_id>

Example:

> ac po identity ac10293181aa1e5a8181aa8eec400150

Application

Syntax:

accessHistory postEvent <application> <application name_or_id>

Example:

IIQ Console Commands

SailPoint IdentityIQ Console 54

> ac po application ac10293181aa1bff8181aa8d667c0368

Bundle

Syntax:

accessHistory postEvent <bundle> <bundle name_or_id>

Example:

> ac po bundle ac10293181aa1bff8181aa8d6e6c038d

Managed Attribute

Syntax:

accessHistory postEvent <managedattribute> <managedattribute_or_id>

Example:

> ac po managedattribute ac10293181aa1bff8181aa8d7c370497

Certification

Syntax:

accessHistory postEvent <certification> <certification_or_id>

Example:

> ac po certification ac10293181aa10168181aad16a4d1629

Identity Request

Syntax:

accessHistory postEvent <identityrequest> <identityrequest_or_id>

Example:

> ac po identityrequest ac10293181aa10168181aad809fa199f

Work Item

Syntax:

accessHistory postEvent <workitem> <workitem_or_id>

Example:

> ac po workitem ac10293181aa1e5a8181aa9338902231

ReadEvent

IIQ Console Commands

SailPoint IdentityIQ Console 55

The readEvent subcommand reads events posted by createEvent commands from the queue and should be used in
conjunction with the postEvent or multiPostEvent. The accessHistory readEvent command may be abbreviated ac
re.

Syntax accessHistory readEvent --follow

Examples > ac re --follow

Result After all events are returned, the message “No message in queue” is returned.

MultiPostEvent

ThemultiPostEvent subcommand should be used in conjunction with the readEvent. The accessHistory mul-
tiPostEvent command may be abbreviated ac m.

Use any Type above (i.e. Identity, Application, Bundle, Managed Attribute, Certification, Identity Request, Work Item)
and a number indicating the item count that you want returned.

Note: If no count is added, then a default of 10 will be returned.

Syntax accessHistory multiPostEvent <type> [number]

Examples > ac m Identity 5

Result Returns the given number of the type of items indicated.

Snapshot

The snapshot subcommand is used to show the details of the specified snapshot.

Syntax accesshistory snapshot <identity> <snapshot>

Examples
> ac snapshot amy.cox 2022-07-08T14:10:38.465

> ac snapshot ac10293181de1a868181defec5dc09b1 2022-07-08T14:10:38.465

Result Displays details of the specified snapshot.

CreateExtractedObject

This command creates an Extracted Object with a name or an ID.

Syntax createExtractedObject <type> <name_or_id>

Examples > accessHistory createExtractedObject capability

Result
Create and dump an ExtractedObject for the given object with name/id. Displays
the JSON for the ExtractedObject.

PostExtractedObject

IIQ Console Commands

SailPoint IdentityIQ Console 56

This command creates and post an Extracted Object with the given name or ID.

Syntax postExtractedObject <type> <name_or_id>

Examples > accessHistory postExtractedObject certification

Result
Create and post an ExtractedObject for the given object with name / ID. Displays
success or fail.

MultiPostExtractedObject

This command creates and posts multiple Extracted Objects for an object type.

Syntax multiPostExtractedObject <type> [count]

Examples > accessHistory multiPostExtractedObject identityEntitlement 10

Result
Create and post multiple ExtractedObject objects for a given object type. The
default is 10.

ReadQueue

This command reads and displays the JSON for one Extracted Object.

Syntax readQueue [--follow]

Examples > accessHistory readQueue --follow

Result
From the destination queue, read and display the JSON for a single Extrac-
tedObject, if any. The --follow option will continuously read / display until inter-
rupted by using a return key or exiting the console.

SetPretty

This command enables or disables the Pretty Printing feature. A message will display confirming the JSON pretty print-
ing command has been enabled.

Syntax setPretty [<on | off>]

Examples > accessHistory setPretty on

Result Turns pretty printing on / off for JSON output. The default is on.

GetImage

This command creates an image for the Extracted Object.

Syntax getImage <type> <name_or_id>

Examples > accessHistory getImage identityEntitlement

IIQ Console Commands

SailPoint IdentityIQ Console 57

Result
Generates an ExtractedObject for the type and name/id then displays the JSON for
the contained Image object.

Timeline

This command captures a set timeline.

Syntax
timeline <type> <name_or_id> [--startIndex number] [--startDate yyyyMM or
yyyyMMdd] [--startEpoch number] [--itemsPerPage number] [--interval day or
month]

Examples
>accessHistory timeline managedAttribute
ac1029318790138c8187900a3b8a04c6 --startDate 2023

Result Query captures timeline and displays the JSON.

ShowCapture

This command shows details of a specified capture.

Syntax showCapture <type> <name_or_id> <dateTime>

Examples
> accessHistory showCapture workGroup ac1029318799178481879a6c5fcd02b3
2023-04-19T11:50:21.369

Result Retrieves the details of the specified capture. Displays the JSON.

DiffCapture

This command shows the difference between the last two captures. Including date and time is optional.

Syntax diffCapture <type> <name_or_id> <dateTime> <dateTime>

Examples > accessHistory diffCapture identity amy.cox.

Result Shows the differences between two captures.

ApplyPatches

This command allows comparison to the latest extract.

Syntax applyPatches <type> <name_or_id> [-v]

Examples > accessHistory applyPatch identity debbie.smith

Result
Given the entity type and name/id, apply patches to the latest full capture and com-
pare to current extract and state if they are equal. Use -v flag to print JSON details.

Clear

IIQ Console Commands

SailPoint IdentityIQ Console 58

This command clears all tables within the database.

Syntax clear

Examples > accessHistory clear

Result Clear / reset all access history data.

Data Extract Console Commands

Data Extract

Entering dataextract at the console lists all of the Data Extract commands that can be used.

Syntax: This command requires a subcommand to specify the particular action you want the command to take. If no
subcommand is supplied, usage for subcommands is listed followed by the message

"dataextract requires a subcommand."

Details about subcommands and their options are provided below; the general syntax for running the command with a
subcommand is:

dataExtract subcommand

Extract

The dataextract extract command lets you view extractedObjects based on the specific Extract YAMLConfig.

Caution: extract does not write a message to a queue unless a --write argument is supplied,
see below.

Syntax:

dataextract extract --config <extract config name> [--type <type>] [--write] [--

timestamp]

The --config argument is required.

The --type option can be used to define the type of objects to extract. If omitted, all types will be extracted.

The --write option can be used to write the data to the configured output queue. By default, it writes to the screen.

The --timestamp option updates the timestamp.

Example:

> dataextract extract --config AccessHistoryExportConfig

Generateextract

IIQ Console Commands

SailPoint IdentityIQ Console 59

The dataextract generateextract command generates a default Extract YAMLConfig for an object or set of objects.
This convenience gives you a faster start to creating your Extract YAMLConfigs. You can generate a configuration,
then use it or customize it for your needs.

Syntax:

dataextract generateextract [--classes <classes>] [--write <config name>] [--force]

[--destination <queue name>] [--transformConfigurationName <transform config name>]

[--interceptdeletes <'none', 'brief' or 'full'>]

Example:

> dataextract generateextract --classes Identity,ManagedAttribute,Capability --des-

tination queue://dataExtractDestinationName --transformConfigurationName testTrans-

formName

You may specify a list of classes – note that if you write the config file, it will replace anything that is already there, it
doesn't do any merging. If you do not specify a list of classes then all major classes will be added, with the exclusions
of the following classes that are prevented from being generated:

l HistoricalCapability.class

l HistoricalCapabilityCapture.class

l HistoricalCertification.class

l HistoricalEntitlementCapture.class

l HistoricalIdentity.class

l HistoricalIdentityCapture.class

l HistoricalIdentityEvent.class

l HistoricalWorkgroup.class

l HistoricalWorkgroupCapture.class

l HistoricalWorkgroupEvent.class

l HistoricalManagedAttribute.class

l HistoricalManagedAttributeCapture.class

IIQ Console Commands

SailPoint IdentityIQ Console 60

l HistoricalManagedAttributeEvent.class

l HistoricalRole.class

l HistoricalRoleCapture.class

l HistoricalRoleEvent.class

l InterceptedDelete.class

This configuration will just be displayed unless you add --write.

If you try to write a configuration file with the same name as the existing one, you will get an error unless you use the -
-force option.

You must provide a message destination.

You must provide a transformConfigurationName.

You can specify the level of intercepted delete data for all objects generated.

Generatetransform

The dataextract generatetransform command generates a default Transform YAMLConfig for any first class object.
This convenience gives you a faster start to creating your Transform YAMLConfigs. You can generate a configuration,
then use it as is or customize it for your needs.

Syntax:

dataextract generatetransform [--classes <classes>] [--write <destination>]

Example:

> dataextract generatetransform --classes Application,Identity --write AllOb-

jectsXform

By default, with no arguments, this command generates a transform configuration for a predetermined set of objects.

The --classes option outputs a config to the console for the listed class(es) only; for example, including --
classes Application outputs a config for the Application class only. If you do not specify a list of classes, then all
major classes will be added, with the exclusion of the following classes that are prevented from being generated:

l HistoricalCapability.class

l HistoricalCapabilityCapture.class

l HistoricalCertification.class

IIQ Console Commands

SailPoint IdentityIQ Console 61

l HistoricalEntitlementCapture.class

l HistoricalIdentity.class

l HistoricalIdentityCapture.class

l HistoricalIdentityEvent.class

l HistoricalWorkgroup.class

l HistoricalWorkgroupCapture.class

l HistoricalWorkgroupEvent.class

l HistoricalManagedAttribute.class

l HistoricalManagedAttributeCapture.class

l HistoricalManagedAttributeEvent.class

l HistoricalRole.class

l HistoricalRoleCapture.class

l HistoricalRoleEvent.class

l InterceptedDelete.class

Note: Workgroup will be added as a special case since it's a subtype of Identity. Workgroup is
added with all of the fields present in Identity.

The --write option can be used to write the data to the configured output queue. By default, it writes to the screen.

The --force option can be used to overwrite an existing config file with the same name.

SetPretty

The dataextract setPretty command turns JSON pretty printing on or off. Pretty printing format is easier to read.

Syntax dataextract setPretty [ON/OFF]

Examples
>dataextract setPretty ON

>dataextract setPretty OFF

Result
JSON pretty printing turns on or off. Using a value that is not ON turns pretty print-
ing off.

IIQ Console Commands

SailPoint IdentityIQ Console 62

Note: The ON / OFF command is case insensitive.

Message

The dataextract message command requires an argument, either --destination or --test. If the provided
queue has messages, --destination <destination> dequeues one message each time the command is
issued. --test creates a queue, writes a message, reads the message, and then deletes the queue.

Syntax

dataextract message --destination <destination> [--drain] [-

-topic] [--wait <wait time in seconds>]

Or

dataextract message --test [--topic]

Examples

>dataextract message --destination <valid queue name>

Requires a value for destination queue.

Or

>dataextract message --test

Result
If the provided queue has messages, one message dequeues each time the com-
mand is issued.

The --drain argument may be used to read messages from the destination until no more are present.

The --topic option can be used to treat the destination as a topic rather than a queue.

--wait <wait time in seconds> allows time for all messages to drain.

Transform

The dataextract transform command transforms an object into JSON using a specific Transform YAMLConfig.

All arguments are required when a default config is not set. Config is not required when a default config is set. The
default config can be overridden by passing in another config.

Note: If the default config is Extract type, it causes an error.

Syntax
dataextract transform [--type <type>] [--name_or_id <name_

or_id>] [--config <config>]

Example >dataextract transform

Result An object is transformed into JSON using the specific Transform YAMLConfig.

The --type <type> option can be used to indicate the friendly name of the type of object to transform.

The --name_or_id <name_or_id> option can be used to indicate the name or ID of the object to transform.

IIQ Console Commands

SailPoint IdentityIQ Console 63

The --config <config> option can indicate the name of the configuration object used to transform the object to
JSON.

ListDestinations

The dataextract listDestinations command has no arguments. It lists all queues.

Syntax dataextract listDestinations

Example >dataextract listDestinations

Result

Destination type: QUEUE

queue://3ad93583-9f77-417c-9b03-e21901c4ad7a

queue://5d08a11b-81bd-4668-8569-3001180baba8

queue://the4364QueueToo

queue://ActiveMQ.Statistics.Broker

queue://ActiveMQ.Statistics.Subscription

queue://iiq.destination.stats.queue

queue://the4364ConsoleQueue

queue://accessHistoryExtractedObjects

queue://iiq.subscription.stats.queue

queue://9a0d5416-ee45-4538-b54e-9a8f25b56273

queue://ActiveMQ.Statistics.Destination.>

queue://14547f55-ac92-4698-b4a7-55a668f489a2

queue://iiq.broker.stats.queue

Connect to a Broker

A broker must be running in order to have successful outputs from the Data Extract console commands. The following
subcommands can help you connect to a broker when all brokers are down and no connection can be made:

1. dataextract extract -- write

a. Begin with the broker down.

b. Issue this command, take the broker down, then bring it back up.

c. Evaluate what happens – does it pick back up?

2. dataextract message

IIQ Console Commands

SailPoint IdentityIQ Console 64

a. Use the --destination <valid queue> and --follow argument so the connection stays act-
ive.

i. Issue the command – expect to see connection errors.

ii. Bring a broker up and make sure it can reconnect and continues to try to read messages.

b. --test with all brokers down

3. dataextract listDestinations

a. Issue the command and watch for exceptions.

	IdentityIQ Console
	Launching the Console
	Viewing the List of Commands
	Command-Line Parameters
	Piped Commands in the IdentityIQ Console
	Sample Unix Piped Commands
	Sample Windows Piped Commands

	Command Syntax
	Syntax for Redirecting Command Output

	IIQ Console Commands
	General Commands
	Object Commands
	Identities Commands
	Task Commands
	Certification Commands
	Group Commands
	Workflow Commands
	Test Commands
	Plugin Commands
	Recommender Commands
	Other Commands
	Access History Console Commands
	Data Extract Console Commands

