
Business Processes
Version: 8.4

Revised: September 2023

This document and the information contained herein is SailPoint Confidential Information

Copyright and Trademark Notices

Copyright © 2023 SailPoint Technologies, Inc. All Rights Reserved.

All logos, text, content, including underlying HTML code, designs, and graphics used and/or depicted on these written
materials or in this Internet website are protected under United States and international copyright and trademark laws
and treaties, and may not be used or reproduced without the prior express written permission of SailPoint Tech-
nologies, Inc.

“SailPoint Technologies,” (design and word mark), “SailPoint,” (design and word mark), "Identity IQ,” “IdentityNow,”
“SecurityIQ,” “Identity AI,” “Identity Cube,” and “SailPoint Predictive Identity” are registered trademarks of SailPoint
Technologies, Inc. “Identity is Everything,” “The Power of Identity,” and “Identity University” are trademarks of
SailPoint Technologies, Inc. None of the foregoing marks may be used without the prior express written permission of
SailPoint Technologies, Inc. All other trademarks shown herein are owned by the respective companies or persons
indicated.

SailPoint Technologies, Inc. makes no warranty of any kind regarding these materials or the information included
therein, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
SailPoint Technologies shall not be liable for errors contained herein or direct, indirect, special, incidental or con-
sequential damages in connection with the furnishing, performance, or use of this material.

Patents Notice. https://www.sailpoint.com/patents

Restricted Rights Legend. All rights are reserved. No part of this document may be published, distributed, reproduced,
publicly displayed, used to create derivative works, or translated to another language, without the prior written consent
of SailPoint Technologies. The information contained in this document is subject to change without notice.

Use, duplication or disclosure by the U.S. Government is subject to restrictions as set forth in subparagraph (c) (1) (ii)
of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 for DOD agencies, and sub-
paragraphs (c)(1) and (c)(2) of the Commercial Computer Software Restricted Rights clause at FAR 52.227-19 for
other agencies.

Regulatory/Export Compliance. The export and re-export of this software is controlled for export purposes by the U.S.
Government. By accepting this software and/or documentation, licensee agrees to comply with all U.S. and foreign
export laws and regulations as they relate to software and related documentation. Licensee will not export or re-
export outside the United States software or documentation, whether directly or indirectly, to any Prohibited Party and
will not cause, approve or otherwise intentionally facilitate others in so doing. A Prohibited Party includes: a party in a
U.S. embargoed country or country the United States has named as a supporter of international terrorism; a party
involved in proliferation; a party identified by the U.S. Government as a Denied Party; a party named on the U.S.
Department of Commerce’s Entity List in Supplement No. 4 to 15 C.F.R. § 744; a party prohibited from participation in
export or re-export transactions by a U.S. Government General Order; a party listed by the U.S. Government’s Office
of Foreign Assets Control as ineligible to participate in transactions subject to U.S. jurisdiction; or any party that
licensee knows or has reason to know has violated or plans to violate U.S. or foreign export laws or regulations.
Licensee shall ensure that each of its software users complies with U.S. and foreign export laws and regulations as
they relate to software and related documentation.

Contents

Business Process Management 1

Workflow Basics 2

Using the Business Process Editor with Workflows 8

Editing Workflow XML 26

Accessing the XML 26

Dollar-Sign Reference Syntax 27

XML Content 27

Workflow Element 28

Variable Definitions 29

Workflow Description 32

Rule Libraries 32

Step Libraries 33

Step Elements 34

Approval Steps 44

Workflow Library Methods 52

Standard Workflow Handler 52

Identity Library 55

IdentityRequest Library 62

Approval Library 62

Policy Violation Library 64

Role Library 64

LCM Library 66

Monitoring Workflows 67

Viewing the Workflow Case XML 67

Advanced Workflow Topics 68

Loops within Workflows 68

Launching Workflows from a Task or Workflow 68

Workflow Forms 71

Business Process Management

SailPoint Business Processes 1

Business Process Management

A Business Process is a sequence of operations or steps that are launched to perform work. IdentityIQ Business Pro-
cesses include standard out-of-the-box processes and custom installation-specific processes. The informal term
workflow is also used in this document to refer to a business process.

System events trigger both standard and custom IdentityIQ Business Processes. Events that can trigger a workflow
include:

l Role creation or modification

l Account Group creation or modification

l Identity update

l Identity refresh

l Identity correlation

l Deferred role assignment, de-assignment

l Deferred role activation, deactivation

l Any Lifecycle Manager event

l Any Lifecycle Event (marked by changes to an Identity's attributes)

Custom workflows can be defined to do a wide variety of processing tasks. You can use:

l IdentityIQ workflow library methods and rules.

l Custom BeanShell scripts and rules.

Customizing or creating workflows generally involves a combination of XML and Java / BeanShell programming. You
can manage some customization activities with the IdentityIQ graphical process editor that is included in the product.
To customize or create new workflows, typically you need to be comfortable writing XML and Java.

This document includes these topics:

l Workflow Basics

l Using the Business Process Editor with Workflows

Business Process Management

SailPoint Business Processes 2

l Editing Workflow XML

l Workflow Library Methods

l Monitoring Workflows

l Advanced Workflow Topics

Workflow Basics
This section contains some key concepts for developing and using workflows. Topics include:

l Terminology

l Important Workflow Objects

l Workflows Operation

l Triggering Workflows

l IdentityIQ Default Workflows

Terminology

The terms business process andworkflow are used synonymously in IdentityIQ and throughout this document.

The IdentityIQ user interface refers to these sets of connected actions as business processes, which is the term that
business managers often use. System implementers and users working in the object model typically use the term
workflow.

Important Workflow Objects

The IdentityIQ Object Model uses four key objects in workflows. To work with workflows, you need a basic under-
standing of these objects.

Note: The most important object for writing workflows is the WorkflowContext object, which
tracks the launchtime state of the workflow and performs other critical functions. Because Work-
flowContext methods are used in workflows, data can be extracted from it as needed within any
step of the workflow.

Object Usage

Workflow
Defines the workflow structure and steps involved in the workflow pro-
cessing.

Business Process Management

SailPoint Business Processes 3

Object Usage

WorkflowCase

Represents a workflow in progress.
Contains a workflow element in which the process is outlined and current
state data is tracked.
Contains identifying information about the workflow target object.

WorkflowContext

Tracks launchtime information the Workflower maintains as it advances
through a workflow case.
Passed into rules and scripts and to the registered WorkflowHandler.
Contains all workflow variables, step arguments, current step or approval,
workflow definition, libraries, and WorkflowCase.

TaskResult
Records the completion status of a task, or in this case, the workflow.
Contained within the WorkflowCase.

Workflows Operation

Note: If multiple identities are modified at one time in a way that requires a workflow to launch for
all of the identities, a separate workflow case is created to track the processing of the workflow
for each single identity.

Workflows carry out a sequence of defined actions based on a triggering event and can be used for a variety of activ-
ities within the system. In its launching state, a workflow is tracked through a workflow case, which manages only one
target entity at a time (one identity, one role, one provisioning plan, etc.).

Provisioning Plans in Workflows

A provisioning plan contains a list of requested changes to an identity. Most workflows that change identities contain a
single provisioning plan in a workflow variable. When performing Workflow customization you commonly need to
inspect and sometimes need to modify the provisioning plan.

Note: Customization rules might run multiple times, updating the same ResourceObject. For
example, once for the provisioning result, once for the result in the provisioning plan, and once
for the result in the account request.

Note: Only one provisioning plan can be referenced in a workflow case at a time.

When you request changes for more than one identity at a time, even if the same change is requested for all the iden-
tities:

Business Process Management

SailPoint Business Processes 4

l A separate provisioning plan is created for each identity.

l A separate workflow case is created to manage the provisioning plan created for each identity.

Triggering Workflows

Note: You can also configure an IdentityIQ task to trigger a workflow. This workflow set up is a
more complex process. See Advanced Workflow Topics .

Events that occur in other parts of IdentityIQ and changes to attributes can trigger Workflows. CommonWorkflow trig-
gers include:

l Lifecycle Manager Actions – Requests to change an identity's roles, entitlements, or accounts can activate
workflows.

l Lifecycle Events – Creating an identity, deactivating an identity, or moving an identity from one manager to
another manager can activate workflows.

l Non-Lifecycle Events – Editing a role, editing an account group, and changing a password can active work-
flows.

l Identity Attribute Change – Value changes can activate workflows.

l Policy Violations – A policy violation can activate workflows.

This table lists the main areas of IdentityIQ where you can associate Workflows to system activities.

Workflow
Trigger

IdentityIQ Setup

Lifecycle
Manager
Requests

Select Lifecycle Manager from the gear icon menu and go to the Business Pro-
cesses tab.

Lifecycle
Events

Select Lifecycle Events from the Setupmenu and specify the business process
behavior.

Non-LCM-
related
Events

Linked to triggering events.
SelectGlobal Settings from the gear icon menu and go to the IdentityIQ Con-
figuration page. Select the Identities, Roles, or Miscellaneous tab and then select
a business process.

Identity
Attribute
Change

Configured with a Value ChangeWorkflow.
SelectGlobal Settings from the gear icon menu and go to the Identity Mapping
page. Click an attribute to edit or add a new attribute. On the Edit Identity Attribute

Business Process Management

SailPoint Business Processes 5

Workflow
Trigger

IdentityIQ Setup

page, go to the Advanced Options > Value Change Workflow option to select
the business process.

Policy
Violation

Select Policies from the Setupmenu, select or create a new policy, and specify
the business process behavior.

IdentityIQ Default Workflows

IdentityIQ is preconfigured with various standard workflows that manage activities. The following workflows are
examples of default workflows that are included with the product:

l Provisioning of roles or entitlements

l Account management

l Identity creation

l Password management

The default workflows can be configured and customized to address the specific business requirements of each install-
ation. Additionally, you can write new workflows and apply them to any of the actions in IdentityIQ that support work-
flows.

Workflow Types

Each workflow must have a specified type. The type determines which workflow libraries are available to it, and which
activities it can be assigned to.

Default workflows have predefined workflow types. IdentityIQ uses these assigned types to determine which work-
flows to present in the Business Process configuration list boxes. Workflows can be specified to activate based on a
specific system event.

For example, role create, update, and delete actions can trigger a RoleModeler type of workflow. Only workflows of
that type are listed in the dropdown list for that configuration option.

Note: You can assign custom types to workflows. However, custom type workflows can only be
triggered through the user interface on Lifecycle Events, which can trigger workflows of any type.

Workflow Types and Associated Actions

This table lists the workflow type associated with each type of action within IdentityIQ.

Business Process Management

SailPoint Business Processes 6

Process Type Description

Policy Viola-
tion

Workflow activated to launch policy violation actions.

Batch Pro-
visioning

Workflow activated to launch batch requests.

Scheduled
Assignment

Workflow activated to when a role is ready to be assigned.

Scheduled
Role Activ-
ation

Workflow activated when a role is ready to be enabled or disabled.

Managed
Attribute

Workflow activated when an entitlement is created or edited.

Identity Cor-
relation

Workflow activated when performing identity correlation tasks.

Identity Event
Workflow activated for identity event. For example, sunrise / sunset dates for
deferred entitlement, role assignment, or role removal.

Identity Life-
cycle

Workflow activated for Lifecycle events. For example, Lifecycle Event – Joiner or
Lifecycle Event – Leaver.

Identity
Update

Workflow activated when you update an identity through the Identity > Identity
Warehouse page. Typically requires few or no approvals.

Identity
Refresh

Workflow activated for identities that are refreshed using the Identity Refresh
task. This type of process can be used for additional customization during
refresh, and to present provisioning policy forms if accounts need to be created
as a result of automated role assignment.

LCM Identity
Workflow associated with Lifecycle Manager Identity related tasks, for example,
LCM Create and Update.

LCM Pro-
visioning

Workflow activated for Lifecycle Manager provisioning tasks.

LCM Regis-
tration

Workflow activated for registration tasks.

Policy Viola-
tion

Workflow activated to initiate policy violation actions.

Role Modeler
Workflow associated with Role functions. For example, Owner Approval and
Role Activation.

Subprocess Designation of a workflow which is part of a larger workflow.

Password
Intercept

Workflow activated when a password change interception event is received.

Business Process Management

SailPoint Business Processes 7

Sub-process Workflows

Some complex workflows are divided into multiple sub-process workflows that are activated by a master workflow.
Using subprocess workflows with a master workflow can:

l Simplify the structure of the master workflow

l Make workflows easier to manage

l Promote reusability because more than one master workflow can reference the same subprocesses

As a standard practice, these smaller workflows are assigned the Subprocess type of workflow. This type is not asso-
ciated with any system functionality. However, using the Subprocess type designation enables you to easily identify
the workflow as a subprocess of a larger workflow.

Transient Workflows

Transient workflows are launched in a special mode that does not persist any information to the database. A workflow
remains in the transient state until the workflow reaches an approval step. If the workflow launches to completion
without an approval step, nothing is stored in the database unless the browser terminates or the session times out the
workflow and any progress made is lost.

Note: If the browser terminates or the session times out the workflow and any progress made is
lost.

Examples of transient workflows include:

l QuickLaunch workflows that can present a series of forms before performing any relevant actions

l Self-registration workflows that do not require authentication

l Workflows for users trying the registration process, who do not have an inbox where they can see their past
attempts

To create a transient workflow, add a variable named transient and set the value to true.

For transient workflows to work correctly, the user interface code needs to manage the workflow case in a special
way, through aWorkflowSession.

The case persists when any of these things happen:

l An approval for someone that is not the submitting user

l A step with a wait='x' in it

Business Process Management

SailPoint Business Processes 8

l A step with background='true'

Using the Business Process Editor with Workflows

Note: Because some workflow steps cannot be defined with the graphical editor, workflow devel-
opment can involve direct editing in the XML representation and some amount of Java coding.
An understanding of XML and Java syntax is a general requirement for workflow development.

The IdentityIQ user interface provides a graphical tool for defining and editing workflow processes. You can use the
IdentityIQ Business Process Editor to:

l Create a new workflow or edit an existing workflow

l Set up the workflow structure

l Create the steps that define the behavior or the workflow

l Outline the transitions between the steps

l Define forms

l Assign conditions

This tool also provides a graphical representation of the process flow that can be used to create documentation about
the activities included in the workflow.

Typically, administrators use the graphical editor to outline the process and then move to the XML representation to
add to or adjust the details of each step. After you save the process, you can view, edit, or export the XML rep-
resentation from the IdentityIQ Debug pages.

Creating and Editing Workflows

Use the Business Process Editor to create a new workflow or edit an existing workflow. Original workflows can also be
created from existing processes.

Basic Workflow How-To Tasks

The Process Editor has the following tabs:

Interface
Tab

Inputs

Process
Details

Specify Name, Type, and Description of the workflow.
See Process Details Tab.

Business Process Management

SailPoint Business Processes 9

Interface
Tab

Inputs

Process
Variables

Lists the input, output, and processing variables you can use with the workflow.

See Process Variables Tab.

Process
Designer

To graphically represent the process, specify the actions involved in each step, and
provide the evaluation conditions for moving from one step to another.

See Process Designer Tab,

Process
Metrics

Review statistics gathered for the process as it launches.

See Process Metrics Tab.

For more information, see:

l Basic Workflow How-To Tasks

l Editing Workflow XML

l Workflow Library Methods

l Monitoring Workflows

l Advanced Workflow Topics

Process Details Tab

The Process Details tab contains basic information about the workflow, including:

Name – name for the workflow.

Type – the pre-defined workflow type for this workflow. IdentityIQ uses types to determine which workflows to present
in the Business Process configuration list boxes. SeeWorkflow Types for details.

Description – a description of the workflow.

Enable Monitoring – select this option to turn on metrics tracking for the workflow.

Process Variables Tab

The Process Variables tab lists variables you can use with the workflow. For most of the default processes, the vari-
ables are listed in a collapsed, advanced view. You can expand the view to show the details for each variable. Vari-
ables include:

Business Process Management

SailPoint Business Processes 10

l Input variables for workflow

l Output variables for workflow

l Working variables used for processing a workflow

Variables are marked as Input, Required, Editable, orOutput.

To delete a variable, expand the variable and click Remove.

Object Usage

Input
Specifies that the variable is one of the arguments to the workflow, passed in
when it is launched.

Output
Stores the variable in the workflow's task result to allow the user to view the pro-
gress and results of the workflow. To view the results, navigate to Setup > Tasks
> Task Results.

Editable Enables the variable to be edited in the basic view.

Required
Indicates that the variable must contain a value (non-null) when the workflow
starts.

Description A brief description of the variable and its function.

Note: The order of variable declarations can make a difference. For variables in the XML that ref-
erence other variables in their initializations, the referenced variable must be declared first.

When variables are created through the user interface, the new variables are inserted in the list above the existing vari-
ables. When the XML representation of the workflow is generated, the variables are listed in the order they were cre-
ated, which is the opposite of the display order in the user interface.

Basic View

IdentityIQ has several built-in business processes that are available when you install the product. The commonly used
processes are available through the Basic View which is a simplified, form-based view. The information you edit in the
Basic View can be also be configured or removed using the Advanced View. The Basic View includes the following
business processes:

Note: Business processes with the LCM label are part of IdentityIQ Lifecycle Manager, which is
licensed separately.

l Identity Update

l LCM Create and Update

Business Process Management

SailPoint Business Processes 11

l LCMManage Passwords

l LCM Provisioning

l LCM Registration

How to Use the Basic View

1. Navigate to the Debug page and edit the XML of the business process.

2. Manually add and configure the configForm attribute to reference the form to be presented in the Basic sec-
tion of process variables. See also Editing Workflow XML.

Note: If the reference exists in the business process, but the form does not, an error is displayed
and you are returned to the Advanced view.

Variable Initialization

To initialize variables for the workflow, specify an initial value for the variable in this panel. For best results, use initial
values for the workflow variables, rather than creating multiple process steps to initialize each variable.

There are five ways that initialization can occur:

Object Usage

String Assigns a literal value to the variable.

Reference
Sets the variable value through a reference to one of the other workflow process
variables.

Script Sets the variable with a Beanshell script inside the workflow.

Rule Sets the variable by calling a Beanshell rule outside the workflow.

Call Method
Assigns the return value of a call to a compiled Java method in a workflow library
to the variable.

Variable values passed into the workflow through workflow arguments supersede variable initial
values. Therefore, any value provided in an argument overwrites the initial value for that argu-
ment.

Timing of Variable Definition

Variables that are known at the beginning of workflow development can be defined before the graphical process
design begins. Throughout the development process you might need to define other variables. Variables are not

Business Process Management

SailPoint Business Processes 12

restricted to only those that were previously defined on the Process Variables tab. Variable definition can be done
before, during, or after the design process.

Process Designer Tab

The majority of the work in creating and modifying a workflow is done on the Process Designer tab. The steps and
transitions you create for workflow determine the workflow activities and can include the following items.

Process Steps

A workflow involves a minimum of three steps: a start step, a processing step, and a stop step or END. For best res-
ults, all workflows should contain a start and stop step and that these two steps contain no actions. Workflows can con-
tain as many or as few processing steps as are necessary to manage the required actions. To add steps using the
Process Designer, navigate to the Process Editor and click the desired step type in the Add A Step section. You can
drag steps around the Process Designer grid to line them up visually in a logical progression.

To add a new step:

1. Click Add a Step in the left-hand column to display panel that contains available steps.

Note: Only steps associated with the process type and that exist in the Step Library are lis-
ted in the Add a Step panel.

2. Click and drag the desired step to a position in the process design grid.

To edit to the contents of a step:

1. Right-click the step icon and select Edit Step.

2. The step details window displays. You can:

l Record the Name and Description of the step.

l Name the Result Variable, a variable to receive the resulting value of the step action.

l Specify the Action for the step. See Action Type for details.

Action Type

Each step can take one of the types of actions listed in the following table. For any of these actions, an appropriate
value must be specified or selected before the action can be saved.

For example, if Script is selected, a BeanShell script must be entered in the box. If you choose the Subprocess object,
a subprocess must be selected from the list. If the value is not specified, the step is saved with no associated action.

Business Process Management

SailPoint Business Processes 13

Developers who use subprocesses must write the subprocesses before they can complete the step definition of steps
in the master process.

Note: Because all processing options should end with the stop step, every workflow should end
with a step that transitions to Stop.

Object Usage

Script Executes a segment of Java BeanShell code that is included in the step.

Rule
Executes a workflow Rule – a block of Java BeanShell code encapsulated in a
reusable rule.

Subprocess

Launches another defined workflow, passing control to it until it completes.
When you select this option, the list of available subprocesses – workflows of
type Subprocess – displays and you are given the option to enable step rep-
lication.

Call Method
Calls a compiled java method in the IdentityIQ workflow library, exposed through
the standard workflow handler. When you select this option, the list of available
methods displays.

The Enable Monitoring flag on this window turns on metrics tracking for the step. See Process Metrics Tab for more
information on process monitoring and metrics.

Script

Scripts are java BeanShell code that you write in order to execute a desired action. You write scripts directly in the
Source box in the detail window for the step.

Note: The script examples in this document all show very short java BeanShell code blocks.
There is no set length for a script. A script block within the XML can be any length needed to
accomplish the required processing. However, long scripts are frequently encapsulated in rules,
as discussed in the next section.

Rule

Rules are also blocks of java BeanShell code. Code encapsulated in a rule is available for reuse by other areas of the
application that can launch a rule of the same type. Rules created through this window are of type Workflow and can
be used by any workflow. When you choose Rule as the Action, you can select an existing workflow rule from the list
or create a new rule in the rule editor. To open the rule editor, Click the [. . .] icon.

Subprocess

Business Process Management

SailPoint Business Processes 14

Subprocesses are other workflows. You can use subprocesses to subdivide complex processes into smaller seg-
ments that can be easily managed and reused by other workflows. Subprocesses are complete workflows that contain
a start step, a stop step, and as many processing steps as are needed to complete their activities.

You can enable step replication to enable multiple subprocesses to run to completion at the same time instead of hav-
ing them run serially. For example, in an approval step, you can launch multiple approval subprocesses, to multiple
approvers, that can take an approval all of the way through provisioning instead of the approval step waiting for all
approvals to complete before provisioning can begin.

When you enable replication, you must select an item from the main workflow for replication and an argument that is
passed to the action containing the replicated item. Only one item can be replicated per step, and all of the items must
be passed the same argument. A new subprocess is generated for each item replicated.

Call

The IdentityIQ workflow library contains a set of methods that you launch within a workflow. Methods are exposed
through the standard workflow handler that the workflow engine calls every time an action occurs in a workflow. Every
workflow has access to the methods in the standard workflow handler. Additional libraries of methods are also avail-
able to use in workflows.

Note: When no library list is specified for the workflow, the default includes access to the Identity,
Role, PolicyViolation, and LCM libraries.

Through the XML, you can specify other libraries, including custom libraries for an installation. The user interface does
not provide an option to manage the library list.

Note: Specifying a library list overrides the default. You must explicitly include in the library list
any default libraries that contain methods the workflow needs. SeeWorkflow Element for more
details on specifying a library list.

When Call Method is selected for the workflow step, Action, the method name is selected from the Call Method list.
The methods in these workflow libraries are listed and briefly described in Workflow Library Methods.

Step Arguments

When arguments need to be passed to the script, rule, subprocess, or library method launched by a step, you must
specify the argument on Arguments tab for the step. Arguments can be specified in the following ways:

Type Usage

Basic View
Some steps copied from the step library include a configuration form to simplify the
specification of arguments. When a step has a configuration form, this is called the
Basic View and is shown by default. The Basic View allows you to set arguments

Business Process Management

SailPoint Business Processes 15

Type Usage

using literal values.

Advanced
View

The advanced view gives you more control over how the argument values is cal-
culated.

Return Vari-
ables

Each step can return only one result variable, which can be specified through the
user interface. When a step has an action that launches a subprocess, you can
also use return variables. Multiple values can then be passed back from the sub-
process to the main workflow. Because the user interface does not provide a
vehicle for declaring return variables, You must specify the return variables directly
in the XML.

Type Usage

String A literal value. For example, the name of an email template to use.

Reference A reference to one of the workflow's process variables.

Script A segment of Java BeanShell code that returns a value.

Rule
A workflow rule that returns a value. This functions similar to Script except
BeanShell is contained within a reusable rule.

Call Method A call to a workflow library method that returns a value.

When a script, rule, or library method is used to calculate an argument value, the configuration can be more complex.
If the argument definition needs data to be passed in, you can pass the data by:

l Providing all the current values of workflow variables.
OR

l Declaring the value of step arguments above an argument.

If desired, you can use ordered step arguments instead of workflow variables if the only use for the value is within this
step.

For example, when these two step arguments are declared in this order, the method called to populate Identity_mgr
can use the value in Identity_name in its processing if needed.

Argument Name Value Type Value Source

Identity_name Reference IdentityName

Identity_mgr Rule getManagerRule

Business Process Management

SailPoint Business Processes 16

More on Start and Stop Steps

Similar to other steps, start and stop steps can contain actions that launch scripts, rules, subprocesses, or calls to
workflow library methods. By convention, these steps are included in every workflow but are used only to designate a
clear starting and ending point for the workflow. These steps are generally empty steps with no action. Occasionally,
debugging messages can be printed from these steps to trace workflow progress during development.

Step Icons

When steps are first added through the Process Designer, only three icon types are available: Start, Stop, and Gen-
eric Step. A variety of other icons are available. You can use different icons to make it easier to determine the actions
each step performs.

To change an icon for a step:

1. Right-click the step icon and click Change Icon.

2. Select the desired icon style from the pop-up window.

Approval Steps

Approval steps are a special type of step in IdentityIQ. You can use Approvals to gather data from a user through a
work item. In an approval, the user is asked to review a requested action, such as, granting a role to an identity, and
then give their approval for the action to be processed.

To create a basic approval through the user interface:

1. Right-click the step.

2. Click Add Approval.

Note: A step can contain an action or an approval, but not both. Approval steps are used for
approval processing. Approval steps are not used to perform other actions such as scripts, sub-
processes, etc.

To edit an approval that exists in a step

1. Right-click the step and click Edit Approval.

2. Alternatively, you can choose Edit Approval from the Step Details window.

Approvals are flexible and meet a variety of business needs. An approval can be constructed many ways. approvals
range from a simple one-person approval to a complex approval process that involves multiple people with different
approval modes and notification schemes.

Business Process Management

SailPoint Business Processes 17

Approval Details

Every approval includes the following fields to be completed on the Details tab for the approval:

Object Usage

Name User-defined name for the approval.

Send Comma-separated list of process variable names to be sent to the approval.

Return
Comma-separated list of variables names to copy from the completed approval
work item back into the workflow.

Renderer
JSF (Java Server Faces) include to render the work item details. Not required if
using a default renderer.

Mode Specifies how approval is processed when multiple owners are specified.

Owner

Approver for the approval. Can be more than one Identity name and is specified
by string, reference, script, rule, call method.

When more than one owner is specified, mode determines how and when the
item is submitted to each listed owner. Parallel, parallelPoll, and any modes sub-
mit the approval work item to all owners at the same time. Serial and serialPoll
modes wait until the first owner completes the approval before submitting to the
next approver in the list.

Description
Defines work item description. Shown as the work item Name in the approver's
inbox. Set using string, reference, script, rule, call method.

Approval Arguments

You can set arguments to the approval on the Arguments tab. Generally, variables are passed to approval through
the send list. However, any arguments that require transformation, through script, rule, or library method, must be sent
through an Arg element. Args defined with reserved system names are passed through the Arg element with the
reserved name specified. See Approval Steps for information on reserved system names.

Work Item Configuration

You can specify some details about the notification and escalation / reminder policy for a work item on theWork Item
Configuration tab. The work item appears in the owner's IdentityIQ inbox and requires their input. If no configuration
is specified, the default work item configuration is used.

To change the configuration for the work item

1. SelectOverride Work Item Configuration.

2. To include an electronic signature in the approval step, selectOverride Electronic Signature Configuration.

Business Process Management

SailPoint Business Processes 18

The following configuration options are available on theWork Item Configuration tab:

Option Description

Initial Noti-
fication
Email

To change the notification email template, select the template from the list

Escalation

Choose an escalation policy:

l None – no escalation.

l Send Reminders – allows configuration of reminder options, such as
days before first reminder, frequency, email template.

l Reminders then Escalation – allows reminder option configuration plus
escalation option configuration, such as reminders before escalation,
escalation owner rule, escalation email.

l Escalation Only – allows configuration of escalation options, such as
days before expiration, escalation owner rule, escalation email).

Child Approvals

Use Child Approvals to customize approval processing or presentation for the different sets of identities involved in the
approval process. For example, a change in a user's assigned region requires someone in HR sign off and also
requires manager approval. Although the approval of the user's own manager is required, any HR individual can com-
pletes the sign-off. This type of approval can be created through child approvals.

To create a child approval:

1. Click Add Child Approval on the Details tab for the parent approval.

2. Click the child approval in the Approval Children hierarchy to select it for editing.

To set up the approval described in the example, create two child approvals:

l HR Approval set up – any of the identities who meet the criteria can make the decision for the group

l Manager Approval set up – identity's manager specified as the owner.

Note: The reference variables HRApprovers and identityManager for the example are process
variables defined with initialization scripts that retrieve the appropriate sets of Identities.

Business Process Management

SailPoint Business Processes 19

If either approval requires a custom work item configuration, you can specify the configuration on theWork Item Con-
figuration tab for the approval. Work item configurations are inherited by child approvals if configurations are not spe-
cifically overridden for the child. If you want a single custom work item configuration for the entire set of approvals, the
configuration should be specified onWork Item Configuration tab for the parent approval. In this case, the child
approvals inherit the parent configuration.

Form Steps

An approval step can also display a form. Forms are a general way to request information from the user and do not
necessarily represent an approval. For example, you can use forms to request a missing attribute such as the depart-
ment name for an identity or ask the requester for more information about why they are making the request.

You can define a form inside the workflow step or you can reference an external form that is shared with other work-
flows.

To reference an existing form:

1. Right-click the step and click Add Form.

2. In the first screen, click Reference Form.

3. In the form reference screen, select a form from the table and select the owner who will be shown the form.

To create a custom form for gathering data from a user:

1. Right-click the step and click Add Form.

2. In the first screen, click Create.

3. In the form editor, specify the general form properties.

Field Description

Description Work item description text displayed on the user's home page.

Send
Comma-separated list of process variables to be passed as initial values for the
form fields.

Return
Comma-separated list of form fields to copy back into process variables when the
work item is closed.

Owner
The identity to be shown the form. Can be a simple identity name, a name stored
in a process variable, or a name calculated by a script, rule, or library method.

Business Process Management

SailPoint Business Processes 20

A form includes one or more fields that define what information you want to show and the information you are asking
the user to provide. This form field editor is similar to the field editor for provisioning policies and uses most of the
same options.

Field Attribute Description

Name System-accessible name for field. Used to reference field programmatically.

Display Name Label that is displayed on form for the field.

Help Text Tool tip help text for field.

Type Field type. Impacts rendering of field on form.

Multi-valued Flag to determine if the field can contain multiple values (multi-selectable).

Read Only Field displays a value that cannot be changed.

Hidden Field is not displayed.

Owner Field owner. Does not apply to form fields.

Required Value must be entered.

Refresh Form
on Change

Form is refreshed when the value for this field is changed.

Note: This field is useful when the value of a field in the
form depends on the value in another field.

Display Only Does not apply for workflow forms.

Authoritative Does not apply for workflow forms.

Value Literal, script, or rule to set the initial value of the field.

Allowed Val-
ues

Allowed values for the field. Displays as a dropdown list box or combo box
based on the multi-valued setting.

Validation
Rule or script that validates the value of a field when the form is saved / sub-
mitted. Prevents submission if the value is not valid.

Dynamic
Delays the launch of allowed values, scripts, or rules until the field is selected,
instead of launching as soon as the form loads.

The form editor also provides the option to specify buttons to include on the form.

To add a button definition:

1. Click Add Button.

2. Select the button Action and specify a behavior of the button.

3. Specify addition button options as described in the table below, and click Save.

Business Process Management

SailPoint Business Processes 21

Function Description

Action

Select the action the button takes when pressed. Choose from the following
actions:

l Next – assimilates form data and advances to the next state, such as
OK/Save/Approve/Submit functionality. Sets status of approval to
Approved.

l Cancel – Stops form editing, returns to previous page in the user interface,
and leaves work item active.

l Back – assimilates form data and returns to the previous state. Sets status
of approval as Rejected and advances workflows.

l Refresh – Assimilates the posted form data and regenerates the form. Not
a state transition. Refresh is a redisplay of the form.

Label Text to display on the button.

Parameter
Name of an optional value to be sent with the form fields when this button is
pressed.

Read Only Non-actionable button.

Skip Val-
idation

Ignores the validation when the form is posted.

Value Optional value to be sent with the form fields when this button is pressed.

During initial form specification, defined buttons and fields are listed together in the left panel in the order they are
added. If some buttons were added before some fields, the button can be intermixed. On the final form, buttons are
always grouped together at the end of the form. When the Form Editor is revisited later, the fields are listed together
first, in the order they were created, and then the buttons follow in the order they were created.

Note: Buttons can be reordered in the XML to display in a different order on the form.

Custom forms can also be created or edited through XML. Various advanced form options, such as sections, multi-
column layout, are only available through the XML.

See the Forms documentation for more information.

Step Conditions

Normally when a transition is made into a step, the step action is executed. In some cases you might want the exe-
cution of the step to be optional. You can add a step condition to control whether or not the step action executes. Step
conditions can also simplify transition lines in the process because you do not have to create many complex

Business Process Management

SailPoint Business Processes 22

transitions to skip over steps. You can advance from one step to another and let the step conditions determine if the
step is executed.

To edit the step conditions:

1. Right-click any process step.

2. Click Add Step Condition.

3. Specify addition button options as described in the table below, and click Save.

You can express conditions as any of the following:

Type Description

Reference Evaluation of a defined process variable. Must be a Boolean variable.

Script Segment of java code that evaluates process variables.

Rule
Workflow rule that contains a reusable segment of java code to evaluate process
variables.

Call Method
Call to launch a Java method in the IdentityIQ workflow library. Exposed through
standard workflow handler.

Selecting the Negate option changes the evaluation to the opposite condition. For example, if the condition evaluates
to False, the negate option changes it to True.

Step Transitions

Steps are connected through Transitions. Transitions can connect one step to the next sequentially. Alternatively,
steps can include evaluation statements that enable conditional processing, such as certain data conditions that can
cause the workflow to execute Step A versus Step B.

To add a transition do the following:

1. Right-click the process step for starting the transition and select Start Transition.

2. Navigate to the process step for ending the transition, right-click and select End Transition.

3. Right-click the transition icon and select Edit Transition to set the condition.

4. To add additional conditions to this transition, repeat the process.

To edit the transition conditions:

Business Process Management

SailPoint Business Processes 23

1. Right-click the transition diamond

2. Click Edit Transitions.

3. Specify addition button options as described in the table below, and click Save.

A step can have as many transitions to next steps as needed. Transition conditions are evaluated in the order they are
listed. The first transition that has no condition, or whose condition evaluates to true is taken. Use the up and down
arrows in the transitions dialog box to reorder the transitions. As a recommended practice, the final transition should
have no condition. That transition is taken when no other transition conditions are met. If a step only has transitions
with conditions, and none of the conditions are met, the workflow ends.

Conditions can be expressed as any of the following:

Type Description

String

Not used. This condition is an artifact of the common structure used for variable
setting and does not apply to conditions. A literal value of True or False can be
specified but does not allow any evaluation in the transition. True always launches
the associated step and False always bypasses the associated step.

Reference Evaluation of a defined process variable. Must be a Boolean variable.

Script Segment of java code that evaluates process variables.

Rule
Workflow rule containing reusable segment of java code to evaluate process vari-
ables.

Call Method
Call to launch a Java method in the IdentityIQ workflow library. Exposed through
standard workflow handler.

Transition conditions must evaluate to Boolean values. If the value is true, the workflow moves to the step that the
transition references. If the value is false, the next transition in the list is evaluated.

Selecting the Negate option changes the evaluation to the opposite condition. For example, if the condition evaluates
to False, the negate option changes it to True.

Process Metrics Tab

The Process Metrics tab displays the following statistics that are useful for troubleshooting workflows:

l Number of times the workflow launched

l Number of times the workflow succeeded or failed

Business Process Management

SailPoint Business Processes 24

l Average and maximum duration of the workflow

l Date the workflow last launched

You can view additional process metrics, including data tracked at the step level, through the Intelligence >
Advanced Analytics > Process Metrics Search tab.

To turn on metrics tracking:

1. For individual workflow steps, select Enable Monitoring in the Details window.

2. Alternatively, you can right-click on a step and select Enable / Disable from the dropdown menu on the step.

To turn on monitoring for all steps in a workflow, clickMonitor at the bottom of the business process editor window.

Basic Workflow How-To Tasks

You can perform the following tasks:

l How To View or Edit a Workflow

l How To Create a NewWorkflow

l How To Use an Existing Workflow to Create a New Business Process

How To View or Edit a Workflow

1. Navigate to Setup > Business Processes.

2. Select an existing workflow from the Edit An Existing Process list.

3. Navigate through each of the process tabs to view or modify the workflow data.

4. To save changes to an existing workflow, click Save.

How To Create a New Workflow

1. Navigate to Setup > Business Processes.

2. Click New to create a new workflow.

3. Enter a short descriptive name for the process (that is, the workflow).

Business Process Management

SailPoint Business Processes 25

4. In the Type field:

a. Select a workflow type from the dropdown list of predefined types. The available types are restricted to
the process options related to the workflow.

b. To enter a custom type, manually enter the type name in the box instead of selecting one from the list.
See the Workflow Basics chapters for any limitations to custom types.

5. Enter a Description that provides an overview of the workflow function.

6. If you want to track metrics for the workflow, check the Enable Monitoring box. See Process Metrics Tab for
more details.

7. Navigate through each of the process tabs and specify workflow data.

8. Click Save.

How To Use an Existing Workflow to Create a New Business Process

1. Navigate to Setup > Business Processes.

2. Select an existing workflow from the Edit An Existing Process list.

3. Navigate through each of the process tabs to view or modify the workflow data.

4. Click Save As and enter a unique name for the workflow.

Editing Workflow XML

SailPoint Business Processes 26

Editing Workflow XML

There are various options for editing workflow XML. You can:

l Create the initial workflow through the user interface and then edit the workflow directly.

l Complete all workflow development in XML.

l Write original XM or use XML from an existing workflow as a template for a new process

All of these methods are valid and can be used as desired.

Accessing the XML
The XML for existing workflows can be viewed and edited through the IdentityIQ Debug pages or can be exported
through the IdentityIQ Console.

Debug Pages

To view the XML in the Debug pages, navigate to the Debug pages and selectWorkflow from the object list to view a
list of all defined workflows in the system.

to view the XML representation, click the name of the workflow. From the Debug pages you can edit and save
changes. A workflow can also be copied from here and pasted into an external editor of choice.

l View and edit the XML.

l Save changes to the XML.

l Copy and paste the XML to an external editor.

IdentityIQ Console

You can export one or more workflows from IdentityIQ through the console. The console export is the most efficient
way to get the XML for all workflows extracted from the system at one time. The IdentityIQ console export command
can extract all the Workflow XMLs together into a single file.

See the IdentityIQ Console documentation for more details.

After exporting the XML, you can parse the XML into a separate file for each workflow and save the files in the install-
ation source code control system for later use in system environment migrations or in product upgrade processes.

Editing Workflow XML

SailPoint Business Processes 27

Object Usage

Workflow
Defines the workflow structure and steps involved in the workflow pro-
cessing.

WorkflowCase
Represents a workflow in progress. Contains a Workflow element in which
the process is outlined and current state data is tracked, as well as identi-
fying information about the workflow target object.

WorkflowContext

Launchtime information that Workflower maintains as it advances through a
workflow case. Passed into rules and scripts and to the registered Work-
flowHandler. Contains all workflow variables, step arguments, current step
or approval, workflow definition, libraries, and workflowCase.

Task Result
Records the completion status of a task, or in this case, the workflow, con-
tained within the WorkflowCase.

Reimporting the XML

Because the system only launches Workflow XML that is saved within IdentityIQ, XML documents that are edited
externally must be re-imported for the changes made to them to take effect.

To reimport an externally saved XML document, use the console import command or from the Import from File page
accessed from the gear menu > Global Settings page.

Dollar-Sign Reference Syntax
You can reference workflow variables inside XML tags and in user interface fields using $() notation. These are
resolved into their variable values. For example, if a variable identityName is defined and contains the full name of an
Identity, for example, John Smith, an Arg specified as:

<Arg name="FullIdentityName" value="$(identityName)">

passes "John Smith" as the value for the variable FullIdentityName.

When the variable is used alone, it functions the same as specifying value="ref:identityName. However, the more com-
mon usage is to include the variable in a longer string such as:

<Arg name="Title" value="Role Update for $(identityName)">

which passes "Role Update for John Smith" as the value for the variable Title.

XML Content
This section describes the elements present in the workflow XML and explains their usage.

Editing Workflow XML

SailPoint Business Processes 28

Header Elements

The following three lines must be included as shown in any workflow document. The <sailpoint> tag must, of course,
be matched with a </sailpoint> tag at the end of the workflow document.

<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE SailPoint PUBLIC "sailpoint.dtd" "sailpoint.dtd">
<sailpoint>

Workflow Element
TheWorkflow tag identifies the name and type of the workflow.

<Workflow explicitTransitions="true" name="WF-Training Hello World Workflow" type-
e="IdentityUpdate">

The attributes of a workflow element including the following:

Workflow Attribute Purpose

configForm

A soft reference to a process variable form presented in the Basic View of
Process Variables tab, or a step form presented in the Basic View of the
Arguments tab on the Step Editor panel accessed from the Process
Designer tab of the Manage Business Process page.

name
Short descriptive name for the workflow this is displayed in user interface
selection list-boxes and list of existing business processes on the Process
Editor window.

type
Workflow type. Type is used to filter workflow selection lists in con-
figuration windows where you select the workflow based on system activ-
ities.

explicitTransitions

Boolean value indicating that transitions between steps are explicitly spe-
cified and workflow should not resort to implicit, fall-through, transitions
when no transition conditions evaluate to true.

The default setting is false. If you so omit this argument and the specified
transition conditions all evaluate to false, the workflow uses implicit trans-
itions and launches the next sequential step in the XML. However, if you
edit a workflow using the Business Process Editor, the value is changed to
true.

Editing Workflow XML

SailPoint Business Processes 29

Workflow Attribute Purpose

If the developer makes the last transition in any set unconditional, which is
considered best practice, the transitions between steps are smoother.

libraries

Lists workflow libraries the workflow needs.

If this attribute is not specified, workflows automatically have access to
Identity, Role, PolicyViolation, and LCM libraries.

stepLibraries

Lists workflow step libraries the workflow can access.

If this attribute is not specified, workflows automatically have access to the
Generic Step Library, which provides access to the Start, Stop and Gen-
eric steps.

handler

The default workflow handler is sailpoint.api.StandardWorkflowHandler.
This attribute does not need to be specified when the default is used. In
this case, the best practice is to omit it.

If you use a custom workflow handler, the custom handler must EXTEND
the default handler and not replace it. The custom handler must be spe-
cified in the workflow Handler argument.

Variable Definitions
The recommended best practice is to identify all variables for the workflow at the top of the XML document. The vari-
able definitions come next in the XML.

At a minimum, variable elements require a name. Other attributes can indicate the variable type and use, such as
input, required, editable, and return. A description can be specified for each variable. When needed, an initialization
value can also be provided. Using the initialization option is the recommended practice rather than creating separate
steps to initialize each variable. Using initialization values is more efficient, easier to read, and easier to debug,
because Trace reports initializations as they occur. For more information, see Initializer Options .

<Variable input="true" name="project" output="true" required="true">
 <Description>
 Project that has account requests in the QUEUED state.
 </Description>
 </Variable>

<Variable editable="true" initializer="true" name="doProvisioning">
 <Description>Set to true to cause immediate provisioning after the assign-
ment</Description>
 </Variable>

Some parts of the variable definition are expressed within attributes on the Variables element. Other parts are
expressed through nested elements of their own.

Editing Workflow XML

SailPoint Business Processes 30

Variable Attributes

Variable
Attribute

Purpose

name Variable name.

type
Variable type. Type declaration is not enforced by the application and is used
primarily for documentation.

initializer Initialization value for the field.

input
Flag indicating that the variable is an argument to the workflow. Omitted if not
true.

output
Flag indicating that the variable is a return value for the workflow. Omitted if not
true.

required
Flag indicating that the variable is a required field for the workflow. Omitted if not
true.

editable Flag indicating that the variable can be edited by the workflow. Omitted if not true.

Nested Tag within Variable Element

Description Provides a description of the purpose for the variable.

Script
Alternative to script in the initializer attribute value. Should be used for initializer
scripts of any length or complexity.

Source
Nested within the Script tag and contains the java BeanShell source for the action
to be executed.

Initializer Options

The Initializer attribute requires additional attention. When these attributes are set through the user interface, you can
specify the attribute as a string, script, rule, call, or reference. The same options are available directly through the
XML.

Note: The initializer for a variable is only used when a value for the variable is not passed in to
the workflow.

Initializer Type

Initializer
Type

Description and Examples

string
Assigns a literal value to the variable.

String is the default initializer option so the "string:" prefix can be included or omit-

Editing Workflow XML

SailPoint Business Processes 31

Initializer
Type

Description and Examples

ted.

Examples:
<Variable initializer="string:true" name="trace"/>

<Variable initializer="spadmin" input="true" name="fallbackApprover">

script

Assigns a value based on the results of a Java BeanShell script.

Examples:

(1) In-line Script. Only use for very short, simple scripts.

<Variable initializer="script:(identityDisplayName != void) ?
identityDisplayName : resolveDisplayName(identityName)"
input="true" name="identityDisplayName">

(2) Script within nested <script> element. Use for most script initializers – scripts of
any complexity or length.

<Variable initializer="script:resolveDisplayName(launcher)"
input="true" name="launcherDisplayName">

<Description>

The displayName of the identity being who started this
workflow.

Query for this using a projection query and fall back to the
name.

</Description>

<Script>

<Source>

// Lookup the launcher's display name for use in email
templates.

String returnString = launcher;

Identity launcherId = context.getObject(Identity.class,
launcher);

if (null != launcherId) { returnString =
launcherId.getDisplayName(); // First+Last }

return returnString;

</Source>

</Script>

</Variable>
rule Assigns a value based on the return value of a workflow Rule.

Editing Workflow XML

SailPoint Business Processes 32

Initializer
Type

Description and Examples

Examples:

<Variable initializer="rule:wfrule_GetIdentityName"
name="IdentityName">

call

Assigns a value based on the return value of a call to a workflow library method.

Example:

<Variable initializer="call:getObjectName" name="roleName">

ref

Assigns a value based on a reference to another workflow variable. This type is
rarely used.

Example:

<Variable initializer="ref:otherVar" name="myVar"/>

Workflow Description
A description element should be included to describe the purpose of the workflow. Although the description element is
not used in the workflow process, it is recommended for usability. In the user interface, the contents of this element
are displayed on the Process Details tab of the Business Process page. This element should be included near the top
of the workflow, either before or after the variable definition section.

<Description>
 Workflow called when a role is ready to be enabled.
</Description>

Rule Libraries
Some methods the workflows use are grouped together into Rule Libraries. These Rule Libraries are defined as rules
in IdentityIQ. However, these libraries contain sets of related but unconnected methods that workflow steps can dir-
ectly within a script action. Because the rule methods are in rules, rather than in the compiled Java classes, their func-
tionality can be easily modified to meet the needs of each installation. To make the methods within one of these rules
available to steps within the workflow, the RuleLibraries element must be declared. See the following example.

Note: Each Reference element applies to one library. Include only the libraries that contain the
required methods in the RuleLibraries declaration for the workflow.

<RuleLibraries>

Editing Workflow XML

SailPoint Business Processes 33

 <Reference class="sailpoint.object.Rule" name="Workflow Library"/>
 <Reference class="sailpoint.object.Rule" name="Approval Library"/>
 <Reference class="sailpoint.object.Rule" name="LCM Workflow Library"/>
</RuleLibraries>

Note: You can create and reference custom libraries using this same syntax.

Step Libraries
Step libraries are designed to offer a group of common functions that can be added to existing workflows from the Add
a Step panel Business Process Editor. Step libraries are a collection of steps encapsulated by a workflow with the tem-
plate attribute marked true. The steps do not have any transitions and they are not executable. A Step Library must be
defined. See the following example.

Note: The type does not have to be StepLibrary. However, using the StepLibrary type ensures
that these workflows do not appear in other parts of the product.

<Workflow name="Provisioning Step Library"
 type="StepLibrary"
 template="true">

When you edit a new or existing workflow, you can include a list of step libraries by including a comma separated list in
the stepLibraries attribute. See the following example.

<Workflow name="LCM Provisioning"
 type="Provisioning"
 taskType="LCM"
 libraries="Identity,Role,PolicyViolation,LCM,BatchRequest"
 stepLibraries="Common,Provisioning"
 handler='IIQ.api.StandardWorkflowHandler'>

In the example above, when you edit a business process with the LCMProvisioning type, the Common and Pro-
visioning steps are available in the Add a Step panel of the Business Process Editor.

Steps within a step library workflow can also include a soft reference to a step form that provides a simplified form-
based interface that you can use to add arguments to some steps in the workflow. This form-based interface adds a
Basic view option to the Arguments tab of the Step Editor. The Basic view is built using the information contained in
the referenced form. The Advanced view is a list of all possible arguments and is built using the list of arguments that
the step library references.

When you add a step form reference to a step library, use the configForm attribute, See the following example.

Editing Workflow XML

SailPoint Business Processes 34

<Workflow name="Provisioning Step Library"
 template="true"
 type="StepLibrary">
 <Step configForm="Provisioning Approval Step Form"
 icon="Task"
 name="Account Approval">
<Arg name="approvalMode"/>
<Arg name="approvalScheme"/>
<Arg name="approvalSet" value="ref:approvalSet"/>
...

In the example above, when you edit an approval step in the Step Editor, the Basic and Advance Views of the Argu-
ments tab are displayed.

Built-in Steps

IdentityIQ includes several built-in steps. The Start, Stop, andGeneric steps apply to all workflow types. The fol-
lowing table lists the names, descriptions, and associated workflow types of additional built-in steps.

Step Description Process Type

Notify
Allows users to select categories of recipients to notify, the specific
recipient, recipients for each category, and the specific email tem-
plate to use for each category.

Identity Life-
cycle

LCM Pro-
visioning

Account
Approval

Used for provisioning request approvals. The process assumes
many of the Provisioning Workflow structures exist.

Identity Life-
cycle

LCM Pro-
visioning

Step Elements

Note: Similar to variables, some parts of a step definition are included as attributes of the step
and others are expressed as nested elements within the step.

The core of the workflow is contained within the step elements. The action attribute determines what processing the
step performs. Steps usually contain one or more nested <Transition> elements and ideally also contain a nested
<Description> element that tells the reader what the step is intended to do. At a minimum, a step should contain:

Editing Workflow XML

SailPoint Business Processes 35

l an icon

l name

l posX attribute

l posY attribute

The action attribute determines what processing the step performs. Steps usually contain one or more nested <Trans-
ition> elements and ideally also contain a nested <Description> element that tells the reader what the step is intended
to do.

<Step icon="Start" name="Start" posX="250" posY="126">
 <Description>
 The workflow's processing starts with this step.
 </Description>
 <Transition to="Initialize"/>
 </Step>

Step Attributes

Step Attribute Purpose

configForm
A soft reference to the form that is presented to the Basic View of the Argu-
ments tab on the Step Editor panel.

name
Short but descriptive name for step displayed in user interface graphical dis-
play below the step icon.

icon

Icon to display for the step in the user interface graphical Process Designer.

Valid icon values include:

Start, Stop, Default (Generic Step), Analysis (Launch Impact Analysis),
Approval, Audit, Catches, Email, Message (Add Message), Provision, Task
(Launch Task), and Und

posX, posY

X and Y indicate positions where the step icon should be displayed on the user
interface graphical Process Designer grid.

If you omit the posX and posY values, the icon is displayed at the top right of
the grid. You can drag the icon around to create the desired layout at a later
time.

action
The processing action to take for the step, such as a script, rule, subprocess,
or call. See Step Actions.

Editing Workflow XML

SailPoint Business Processes 36

Step Attribute Purpose

wait Pauses the action for a specified duration, see Wait Attribute.

catches
Causes the step to be launch when Complete status is caught, rather than
through a transition from another step. See Catches Attribute.

resultVariable Variable name that contains the return value from the step.

Nested Tag within Step Element

Description Provide a description of the step purpose.

Transition
Identifies the next step the process moves to when the current step is com-
plete. See Transition Element.

Arg
Passes variables to the step. Used for steps that require data to be passed in
to them.

Return Receives return values from subprocess steps. See Return Elements.

Script
Alternative to script in the Action attribute for the step. Use these step attrib-
utes for action scripts of any length or complexity.

Source
Nested within the Script tag and contains the Java BeanShell source for the
action to execute.

Transition Element

The transition element indicates the name of the next step the process executes following completion of the current
step and is always nested within a step in the model. Transitions can contain conditions based on a string, script, rule,
call method, or reference (similar to a variable initialization). The return value for conditions must be a Boolean (True /
False). When multiple transitions are stipulated, they are evaluated in the order they are listed, and the transition for
the first condition met is followed. The last transition in the list should, as a best practice, not contain any conditions so
it can be used as the default action.

Transitions contain two attributes:

l to – next step

l when – condition for progressing to the next step

When a script is evaluated as the condition for a transition, it is often specified through these nested elements instead
of as awhen attribute on the transition element, especially if you use a long script.

Editing Workflow XML

SailPoint Business Processes 37

Nested Tag
Within Trans-
ition Element

Purpose

Script
Alternative to script in the transitionwhen attribute. The script should be used
for scripts of any length or complexity.

Source
Nested within the Script tag. This tag contains the BeanShell source for the
condition evaluation.

Example:

<Transition to="end">
 <Script>
 <Source>

("cancel".equals(violationReviewDecision) || ((size(policyViolations)
 > 0) && (policyScheme.equals("fail"))))
 </Source>
 </Script>
</Transition>

Conditions in thewhen attribute can be specified using the following types of conditions:

Condition Type Description and Examples

string

Not used. This condition type is an artifact of the common structure used for
variable setting and does not apply to conditions. A literal value of True or
False can be specified. However, using one of those literal values does not
enable any evaluation in the transition. True always executes the associated
step and False always bypasses the step.

script

Evaluates script result value to determine step transition. Very short scripts are
specified inline on the transition element, within thewhen attribute. Longer
scripts are expressed within nested <script> and <source> elements.

Because script is the default transition when option, the "script:" prefix can be
included or omitted.

Examples:

(1) In-line Script. Use only for very short, simple scripts.

<Transition to="Exit On Policy Violation"

when="script:((size(policyViolations)> 0)

&& (policyScheme.equals("fail")))"/>

(2) Longer script within nested <script> tag should be use for transition scripts

Editing Workflow XML

SailPoint Business Processes 38

Condition Type Description and Examples

of any complexity or length.

<Transition to="end">

<Script>

<Source>

("cancel".equals(violationReviewDecision) || ((size
(policyViolations)

> 0) && (policyScheme.equals("fail"))))

</Source>

</Script>

</Transition>

rule

Evaluates the return value of a workflow rule to determine step transition.

Examples:

<Transition to="Process Approval"
when="rule:RequireApprovalRule">

call

Evaluates return value of a call to a workflow library method to determine step
transition.

Example:

<Transition to:"Check Status"
when="call:requiresStatusCheck" />

ref

Evaluates a defined, Boolean, workflow variable to determine step transition.

Example:

<Transition to="Refresh Identity" when="ref:doRefresh"/>

Unconditional

Specified as last transition option to give a default path for the transition.

Example:

<Transition to="Approve"/>

Step Actions

Most steps involve much more than a name and a transition. Steps also include an action attribute that executes the
workflow processing. The action of a step can be a script or can a rule, subprocess, or a call to a workflow library
method.

Action Type Description

Script
Similar to scripts in other parts of the workflow XML, the script can be contained
within the action attribute or can be nested within the Step in a <Script> block.

Editing Workflow XML

SailPoint Business Processes 39

Action Type Description

Examples:

(1) In-line Script, used only for very short, simple scripts.

<Step action="script:approvalSet.setAllProvisioned();"
icon="Task" name="Post Provision">

<Transition to="Stop"/>

</Step>

(2) Longer script within nested <script> tag. Used for action scripts of any com-
plexity or length.

<Step name="Start" icon="Start" posX="20" posY="20">

<Script>

<Source>

String wfName = wfcontext.getWorkflow().getName();

System.out.println("Starting workflow: [" + wfName + "]");

</Source>

</Script>

<Transition to="Compile Provisioning Project"/>

</Step>

Rule

A step can execute a block of Java BeanShell code encapsulated in a reusable
workflow Rule.

Example:

<Step action="rule:WFRule_verifyIdentity" icon="Task"
name="Verify Identity" posX="600" posY="202">

Subprocess

When you include a <WorkflowRef> element within the step and reference the
SailPoint.object.Workflow class and the specific workflow by name, a sub-
process is defined.

Example:

<Step icon="Task" name="Initialize" posX="320" posY="126">

…

<WorkflowRef>

<Reference class="sailpoint.object.Workflow" name="Identity

Request Initialize"/>

</WorkflowRef>

<Transition to="end">

</Step>

Editing Workflow XML

SailPoint Business Processes 40

Action Type Description

Call

Calls to workflow library methods can be used to do step processing.

Call is the default action option. Therefore the "call:" prefix can be included or
omitted.

Example:

<Step action="call:refreshIdentity" icon="Task"
name="Refresh Identity" posX="618" posY="242">

Arguments

Any variables to be passed to a script, rule, subprocess, or library method must be declared as step arguments
through <Arg> elements. Similar to other variables, the values for arguments can be specified by string, script, rule,
call, or reference. The default specification type is string. Therefore, the "string:" qualifier can be omitted. However,
arguments are also commonly passed by referencing workflow variables.

Step icon="Task" name="Initialize" posX="320" posY="126">
 <Arg name="w" vaflolue="ref:flow"/>
 <Arg name="formTemplate" value="string:Identity Update"/>
 <Arg name="identityName" value="ref:identityName"/>
 ...
 <Description>Call the standard subprocess to initialize the request,
 this includes auditing, building the approvalset, compiling the plan into
 project and checking policy violations.</Description>
 ...
 <WorkflowRef>
 <Reference class="sailpoint.object.Workflow" name="Identity Request
 Initialize"/>
 </WorkflowRef>
 <Transition to="end">
</Step>

When an argument is specified as a script, rule, or call, for example, <Arg name="myVar" value="rule:myWFRule"/>,
any needed arguments to the script, rule, or library method cannot be explicitly specified.

Because these scripts, rules, and library methods automatically have access to the workflow context object, the
scripts can access workflow variables directly through the workflow context get methods. These scripts/rules/methods
can also access any step arguments that were defined before them in the step declaration. For example, the method
that identifies the value for the Manager argument can use the value in the identityName argument in its processing, if
needed. See the following example.

<Step icon="Task" name="Processing Step" posX="320" posY="126">
 <Arg name="identityName" value="ref:identityName"/>
 <Arg name="Manager" value="call:getManager"/>
 ...

Editing Workflow XML

SailPoint Business Processes 41

</Step>

The following table lists the available Arg attributes

Arg Attribute Purpose

name Variable name in process to which the data is being passed.

value Value to pass into the variable, such as string, script, rule, call, reference.

Return Elements

To return more than one value from a subprocess, you can declare <Return> elements for the step. At a minimum, a
return element contains: a name attribute and a to attribute. The name attribute is the name of the variable in the sub-
process workflow and the to attribute is the variable name in the calling (current) workflow. If these names are the
same in both workflows, a to attribute is not required. However, specifying a to attribute is a best practice for clarity.

Use the merge attribute when the variable is a List and the returned values should be appended to the current work-
flow's list instead of replacing it. Similar to Args, value attribute for return elements can be specified as a string, script,
rule, call, or reference. String is the default. If the value argument is omitted, the value of the name variable is copied
as-is into the to variable, However, a script/rule/method can be used to transform or modify the value as it is passed.

l name attribute – name of the variable in the subprocess workflow

l to attribute – variable name in the calling (current) workflow

Note: If these names are the same in both workflows, a to attribute is not required. However, spe-
cifying the to attribute is best practice.

<Step icon="Task" name="Initialize" posX="320" posY="126">
 <Arg name="flow" value="ref:flow"/>
 <Arg name="formTemplate" value="string:Identity Update"/>
 <Arg name="identityName" value="ref:identityName"/>
 ...
 <Return name="project" to="project"/>
 <Return merge="true" name="workItemComments" to="workItemComments"/>
 <WorkflowRef>
 <Reference class="sailpoint.object.Workflow" name="Identity Request
 Initialize"/>
 </WorkflowRef>
 <Transition to="end">
</Step>

The following table lists the available Return attributes.

Editing Workflow XML

SailPoint Business Processes 42

Return
Attribute

Purpose

name Variable name in process from which the data is returned.

to Variable name in the workflow step to which the data is passed.

value Value to pass into the variable, such as string, script, rule, call, reference.

merge
Flag indicating that the value should be merged into the target variable instead of
replacing the variable. This attribute is used for list variables.

local

Only applies to returns on Approvals. (See Approval Steps). A flag that indicate the
value is passed to local storage within the parent approval and not passed to a work-
flow case variable. This attribute is used for complex approvals where a work item
state is saved for later analysis in a script.

Call

Note: Installations can create custom libraries for commonly used and required business meth-
ods. However, custom library methods must be named with unique names that do not conflict
with standard library method names. Conflicts resolve as a reference to the standard library
method. It is possible to extend a standard library and overload its method names. Extending a
standard library is not consider a best practice. Therefore, the best practice is to create new
names for nonstandard methods. Creating new names makes it clear that the method is not a
standard method.

Use calls to workflow library methods to do step processing. Similar to subprocesses, they sometimes require argu-
ments to be passed to them. You declare method arguments the same way as subprocesses. You use Library meth-
ods with a call action. See the following example.

<Step action="call:refreshIdentity" icon="Task" name="Refresh Identity" posX="618" posY-
Y="242">
 <Arg name="identityName" value="ref:identityName"/>
 <Arg name="correlateEntitlements" value="string:true"/>
 <Description>Add arguments as necessary to enable refresh features. Typically you
 only want this to correlate roles. Don't ask for provisioning since that
 can result in provisioning policies that need to be presented and it's
 too late for that. This is only to get role detection and exception
 entitlements in the cube.</Description>
 <Transition to="Notify"/>
 </Step>

The methods available for the call action are those included in the libraries attribute for the workflow element, if spe-
cified. If no libraries attribute is specified, the workflow automatically has access to the methods in the Identity, Role,
PolicyViolation, and Lifecycle Manager libraries. If other libraries, including custom libraries, are explicitly listed in the
libraries attribute, any of the default libraries whose methods are needed by the workflow must also be explicitly

Editing Workflow XML

SailPoint Business Processes 43

included in the list to be available. SeeWorkflow Library Methods for details about the methods available in each lib-
rary.

Wait Attribute

The step wait attribute causes the workflow to pause in its execution for the duration specified. The wait value can be
specified as a string, script, rule, call, or reference. String is the default.

<Step name="Wait for next check" wait="ref:provisioningCheckStatusInterval">
 <Description>
 Pause and wait for things to happen on the PE side.
 Use the configurable interval to determine how long
 we wait in between checks.
 </Description>
 <Transition to="CheckStatus"/>
 </Step>

This attribute creates a special type of step with the sole purpose of creating a pause in the action. Wait steps are com-
monly used in retry logic to enable behind-the-scenes processing to occur before the workflow attempts to repeat an
action.

Catches Attribute

These steps are not caused through a transition from a previous step. These steps are caused by a thrown message
that the steps intercepts or catches. Currently, only a complete message is thrown and can be caught. This process
occurs when one of the following items occurs:

l All sequential steps in a workflow are executed to completion.
OR

l Failure condition results in the termination of the workflow.

<Step catches="complete" icon="Task" name="Finalize">
 <Arg name="project" value="ref:project"/>
 <Arg name="approvalSet" value="ref:approvalSet"/>
 <Arg name="trace" value="ref:trace"/>
 <Description>
 Call the standard subprocess that can audit/finalize the request.
 </Description>
 <WorkflowRef>
 <Reference class="sailpoint.object.Workflow" name="Identity Request Finalize"/>
 </WorkflowRef>
 <Transition to="end"/>

Editing Workflow XML

SailPoint Business Processes 44

The primary purpose of these steps is to update the IdentityRequest object, which tracks and reports the status of a
LifecycleManager request, making the history of LCM request processing available even after the TaskResult for the
workflow was purged.

Each installation can drive custom logic based on catching this complete message.

Approval Steps
Approval is one of the most common actions that a workflow process performs. The IdentityIQ Approval model is con-
structed to simplify the process of defining an approval structure. Approvals are a special type of step that contain an
<Approval> element, specifying how the approval work item is presented for approval.

Some approval steps are designed to get a user's approval on a requested change, as the name implies. However,
the approval element can be used any time data needs to be gathered from a user.

Typically, when you use approval steps to gather non-approval data, you use a custom form to:

l Present the work item to the user
and

l Request the needed information from the user.

For information on creating approval steps, see the section above. Through the XML, the custom form is manually
defined within an approval step. You can also specify custom forms for traditional approvals when you need to present
the information differently than the standard approval forms layout. SeeWorkflow Forms for more details on usage of
custom forms.

Similar to other Workflow elements, you specify some modifiers as attributes on the approval element and specify
other modifiers through nested elements within the approval.

Approval Attributes

Approval
Attribute

Purpose

mode

Specifies how an approval is processed. Mode can be determined from
string, script, rule, call, or reference String is the default. The user interface
only supports the selection of a string of one of the values listed below. The
XML also enables reference to a process variable containing one of those
values or the specification of a script, rule, or method call that can determine
one of those values programmatically.

Valid values are:

Editing Workflow XML

SailPoint Business Processes 45

Approval
Attribute

Purpose

l serial – approvers are specified in order and the item is passed to
each approver in that order. If any approver in the chain rejects, the
item is rejected.

l serialPoll – approvers are specified in order and item is passed to
each approver in that order. Data is collected on approvals and rejec-
tions. However, if one approver rejects, does not necessarily result in
the item being rejected. The action decision is expected to be spe-
cified in AfterScript logic.

l parallel – item is sent to all named approvers at one time. The item is
rejected if any approver rejects it.

l parallelPoll – item is sent to all named approvers at one time. Data
is collected on approvals and rejections but rejection by one does not
mean rejection of item. The action decision is expected to be spe-
cified in AfterScript logic.

l any – item is sent to all named approvers at one time. The first
approver to respond makes the decision for the group.

owner

One or more approvers can be specified by string, script, rule, call, or ref-
erence. String is the default.

The mode determines how and when the item is submitted to each listed
owner when more than one is specified.

renderer JSF include to render the work item details.

return
Comma-separated values (CSV) list of variable names to copy from com-
pleted work items back into workflow.

send CSV list of variable names to include in the work items.

description

Defines work item description. For nested approvals, child approvals use
the work item defined by the parent approval unless the child approval
defines its own work item. You can set the description by string, script, rule,
call, or reference String is the default.

validation

Used to validate any information the user entered during the approval. This
attribute can be specified as string, script, rule, call, or reference. Script is
the default. You generally use a nested validationScript element instead of a
validation argument.

Editing Workflow XML

SailPoint Business Processes 46

Approval
Attribute

Purpose

Nested Tag within Approval Element

AfterScript

Provides instructions for additional processing to be done on the item after
the approval is complete, and only if approved. Often uses methods in the
Approval Rule Library and LCMWorkflow Rule Library. If those methods are
to be used, the rule libraries must be explicitly included in the workflow using
the <RuleLibraries> element.

ParallelPoll and serialPoll items always execute this script after all
responses are collected. With either of these modes, the logic in this script
should aggregate the results and determine if the item should be approved
or rejected. The business determines the criteria for approval or rejection,
for example majority rule, any approval=approval, etc.

In either poll mode, the AfterScript is inherited by child approvals if one is
not specified.In other modes, child approvals do not inherit the after script.

InterceptorScript

This script is more complex than the AfterScript and is used less often. The
script is called in several places in the approval processing: at the approval
start, pre-Assimilation, post-Assimilation, when the work item is archived,
and at the end of the approval. The stage of the processing is passed to the
script as an argument called method that can be used to determine what the
script should do at that time. The workflow context's args are also passed to
the script.

Method values for conditional analysis within InterceptorScript logic:

l startApproval

l preAssimilation

l postAssimilation

l archive

l endApproval

If an InterceptorScript and AfterScript exist, the InterceptorScript postAssim-
ilation logic launches before the AfterScript.

validationScript
Script to perform validation on the work item. For example, you can use this
script to validate any data the user enters on the approval before the data is

Editing Workflow XML

SailPoint Business Processes 47

Approval
Attribute

Purpose

assimilated. This script is inherited by any child approvals.

Source
Nested within the AfterScript, InterceptorScript, and validationScript tags
and contains the java BeanShell source for the script.

Arg

Arguments available to the approval action. Specified by string, script, rule,
call, or reference. Most variables are passed to approval through send list.
However, args that require any transformation must be sent through an Arg
element.

Additionally, the following args defined with reserved system names are
passed through the Arg element with that name specified:

l workItemRequester

l workItemDescription

l workItemType

l workItemTargetId

l workItemTargetName

l workItemTargetClass

l workItemDisableNotification

l workItemNotificationTemplate

l workItemEscalationTemplate

l workItemReminderTemplate

l workItemEscalationRule

l workItemEscalationStyle

l workItemHoursTillEscalation

l workItemHoursBetweenReminder

Editing Workflow XML

SailPoint Business Processes 48

Approval
Attribute

Purpose

l workItemMaxReminders

l workItemPriority

l workItemIdentityRequestId

l workItemArchive

Return

Return value defines how things should be assimilated from a work item
back into the workflow case. This attribute is an alternative to the return
attribute CSV of variables. It is more complex and also more powerful.

This attribute is rarely used in approvals. It is most often used when return-
ing an approval work item variable to a workflow variable of a different name
or when you need to transform the variable contents of a work item with a
script. The use of these types of return elements follows the same rules as
step returns from steps that subprocesses, with addition of local attribute
options. See Step Elements.

The following basic approval step example presents an account change to the identity's manager for approval. The
AfterScript records the approval decision and creates an audit record.

<RuleLibraries>
 <Reference class="sailpoint.object.Rule" name="Approval Library"/>
 <Reference class="sailpoint.object.Rule" name="LCM Workflow Library"/>
</RuleLibraries>

<Step icon="Approval" name="Manager Approval">
<Approval mode="serial" owner="script:getManagerName(identityName, launcher, fall-
backApprover);" renderer="lcmWorkItemRenderer.xhtml" send-
d="approvalSet,identityDisplayName,identityName,policyViolations">

<Arg name="workItemDescription" value="Manager Approval - Account Changes for User:
$(identityDisplayName)"/>
<Arg name="workItemNotificationTemplate" value="ref:managerEmailTemplate"/>
<Arg name="workItemRequester" value="$(launcher)"/>

<AfterScript>
 <Source>

 import sailpoint.workflow.IdentityRequestLibrary;
 assimilateWorkItemApprovalSet(wfcontext, item, approvalSet);
IdentityRequestLibrary.assimilateWorkItemApprovalSetToIdentityRequest(wfcontext,
approvalSet);

Editing Workflow XML

SailPoint Business Processes 49

auditDecisions(item);

</Source>
 </AfterScript>

</Approval>

 <Description>
 If approvalScheme contains manager, send an approval for all
 requested items in the request. This approval will get the entire
 approvalSet as part of the workitem.
 </Description>

<Transition to="Build Owner ApprovalSet"
 when="script:isApprovalEnabled(approvalScheme, "owner")"/>
<Transition to="Build Security Officer ApprovalSet"
 when="script:isApprovalEnabled(approvalScheme, "securityOfficer")"/>
<Transition to="end"/>

 </Step>

Note: In the AfterScript in this example, the methods not qualified by the library name are in the
LCMWorkflow Rule Library that is available to the workflow through the <RuleLibraries> declar-
ation.

The assimilateWorkItemApprovalSetToIdentityRequest method is part of the Iden-
tityRequestLibrary, this is available to the script through the import of that library in the script.

Library methods called through step action attributes are available through the workflow libraries
attribute list,. However, when the library methods are executed from within scripts, the library
must be specifically imported for the script.

Nested Approvals

Child approvals created through the user interface are expressed as nested approval elements in the XML. When nes-
ted approvals exist, the parent ceases to be an approval of its own. In those case, the sole purpose of the parent
approval is to organize and contain the child approvals. The mode on the parent determines how to process the set of
peer child approvals.

 <Approval mode="string:parallel" name="Approve Region" owner="ref:regionApprover"
 send="identityName,region">
 <Arg name="workItemDescription" value="string:Approve Region for $(identityName)"/>
 <Approval name="childApproval1" owner="string:Walter.Henderson"
 send="identityName,region"/>
 <Approval name="childApproval2" owner="string:Alan.Bradley"
 send="identityName,region"/>
 </Approval>

Editing Workflow XML

SailPoint Business Processes 50

In the example above, childApproval1 and childApproval2 are processed in parallel. Because both of these child
approvals are identical (no custom work item config and no children of their own), the same objective can be accom-
plished with a single approval with multiple owners:

 <Approval mode="string:parallel" name="Approve Region" owner="ref:regionApprover"
 send="identityName,region">
 <Arg name="workItemDescription" value="string:Approve Region for $(identityName)"/>
 <Approval name="childApproval1" owner="string:Walter.Henderson"
 send="identityName,region"/>
 <Approval name="childApproval2" owner="string:Alan.Bradley"
 send="identityName,region"/>
 </Approval>

Nested approvals can be used effectively when different approval levels are implemented with custom configurations
and specifications. For example, the workItemConfig for each of the child approvals can be different, which can result
in a notification scheme, escalation policy, etc. for the different approvers.

Nested approvals can be governed by a different approval mode from the one used on the master set and/or can con-
tain their own child approval levels. One child approval can be done as an any approval, one that accepts the ruling of
the first responder of several listed approvers, while the highest approval level is managed serially. Another child
approval can implement custom workItemConfigs for its own child approvals. The example below illustrates all of
these concepts.

Nested approvals can be used effectively when different approval levels are implemented with custom configurations
and specifications. For example, the workItemConfig for each of the child approvals can be. The following example
that illustrates all of these concepts.

 <!-- Approval submitted to HR and to supervisor and manager in serial manner -->
 <Approval mode="string:serial" name="Approve Region" owner="spadmin"
 send="identityName,region">
 <Arg name="workItemDescription" value="string:Approve Region for $(identityName)"/>

 <!-- HR Personnel approve region (whoever responds first makes decision) -->
 <Approval name="HRApproval" mode="string:any"
 owner="ref:HRApprovers" send="identityName,region"/>

 <!-- Supervisor and Manager approve region serially after HR approves -->
 <!-- Each has a different email template (work item config) for notification -->
 <Approval mode="string:serial" name="SupMgrApproval" send="identityName,region">
 <Approval name="Supervisor" send="identityName,region" owner="Tom.Jones">
 <WorkItemConfig escalationStyle="none">
 <NotificationEmailTemplateRef>
 <Reference class="sailpoint.object.EmailTemplate"
 name="SupervisorApprovalEmail"/>
 </NotificationEmailTemplateRef>
 </WorkItemConfig>
 </Approval>
 <Approval name="Manager" send="identityName,region" owner="Mary.Peterson">

Editing Workflow XML

SailPoint Business Processes 51

 <WorkItemConfig escalationStyle="none">
 <NotificationEmailTemplateRef>
 <Reference class="sailpoint.object.EmailTemplate"
name="ManagerApprovalEmail"/>
 </NotificationEmailTemplateRef>
 </WorkItemConfig>
 </Approval>
 </Approval>
 </Approval>

This ability to nest approvals, with options to assign different approval modes and work item configurations to each,
enables implementers to create highly customized approval structures to meet the needs of the installation.

Workflow Library Methods

SailPoint Business Processes 52

Workflow Library Methods

Workflow Libraries are sets of compiled java methods. To be accessible to workflows, these libraries must be spe-
cified as a comma separated list in the libraries attribute of the workflow element. The classes for libraries are named
as follows: SailPoint.workflow.[library]Library.class. Only the [library] portion is specified in the libraries attribute.

The following example makes methods from the SailPoint.workflow.IdentityLibrary.class accessible to the work-
flow.

Example:

<Workflow libraries="Identity" explicitTransitions="true" name="Hello World Workflow"
type="IdentityUpdate">

Note: If no Libraries attribute is specified on the Workflow element, the workflow can access the
Identity, Role, PolicyViolation, and LCM libraries by default.

The following tables list the workflow libraries and the methods available. Although the Standard Workflow Handler is
not technically a library, the methods in it are accessible to every workflow and are called through the same syntax as
library methods.

Standard Workflow Handler

Method / Usage Description

Expected Args

(Required Args are marked with
a *)

Object getProperty(Work-
flowContext wfc)

Returns value of the named sys-
tem property.

name*

public Object isProperty
(WorkflowContext wfc)

Returns true if the named system
property has a value.

name*

public Object getMessage
(WorkflowContext wfc)

Returns localized message for
use in task results

l message*

l type (severity)

l arg1-arg4 (up to 4 para-
meters for the message)

public Object addMes- Adds message to the workflow l message*

Workflow Library Methods

SailPoint Business Processes 53

Method / Usage Description

Expected Args

(Required Args are marked with
a *)

sage(WorkflowContext
wfc)

case.

l type (optional severity)

l arg1-arg4 (up to 4 para-
meters for the message)

public Object
addLaunchMessage
(WorkflowContext wfc)

Adds message to workflow case
that is displayed in the user inter-
face. Not kept in task result. For
example, Request was sub-
mitted.

l message*

l type (optional severity)

l arg1-arg4 (up to 4 para-
meters for the message)

public Object
setLaunchMessage(Work-
flowContext wfc)

Replaces previously added
launch message with a new mes-
sage based on new state.

l message*

l type (optional severity)

l arg1-arg4 (up to 4 para-
meters for the message)

public Object log(Work-
flowContext wfc)

Sends something to log4j.

l message*

l level*

public Object print(Work-
flowContext wfc)

Prints text to the console. message*

public Object audit(Work-
flowContext wfc)

Creates an audit event. Enables
workflows to put custom entries in
audit log, which displays in the
user interface.

l source*

l action*

l target

l string1 - string4

public Object sendEmail
(WorkflowContext wfc)

Sends an email message.

l to*

l cc

l bcc

l from

Workflow Library Methods

SailPoint Business Processes 54

Method / Usage Description

Expected Args

(Required Args are marked with
a *)

l subject

l body

l template*

l templateVariables

l sendImmediate

l exceptionOnFailure

public Object launchTask
(WorkflowContext wfc)

Launches a defined task.

l taskDefinition*

l taskResult

l sync (true=synchronous
execution)

public Object sched-
uleRequest(Work-
flowContext wfc)

Launches a generic event
request.

l requestDefinition*

l requestName (name to
assign to request)

l scheduleDate

l scheduleDelaySeconds

l owner

public Object sched-
uleWorkflowEvent(Work-
flowContext wfc)

Launches a workflow event
request.

l requestName (name to
assign to request)

l scheduleDate

l scheduleDelaySeconds

l owner

Workflow Library Methods

SailPoint Business Processes 55

Method / Usage Description

Expected Args

(Required Args are marked with
a *)

l workflow* (name of work-
flow to launch)

l caseName (optional case
name to override default)

public Object commit
(WorkflowContext wfc)

Commits a transaction. Not com-
monly needed in workflows. Most
commonly used for role
approvals.

l creator

l archive

public Object rollback
(WorkflowContext wfc)

Rolls back a transaction. Not com-
monly needed in workflows. Most
commonly used for role
approvals.

none

Identity Library

Method / Usage Description

Expected Args

(Required Args are marked
with a *)

public String getManager(Work-
flowContext wfc)

Returns the name of the
manager for the specified
identity.

identityName

public Object cal-
culateIdentityDifference(Work-
flowContext wfc)

Derive a simplified rep-
resentation of the changes
made to an identity for an
approval work item.

l oldRoles

l newRoles

l plan

l approvalSet

private void addLinksInformation
(WorkflowContext wfc)

Modifies workflow context
lists of links (accounts) to
be added, moved, or
removed for the identity as

l linksToAdd

l linksToMove

Workflow Library Methods

SailPoint Business Processes 56

Method / Usage Description

Expected Args

(Required Args are marked
with a *)

a result of the provisioning
plan.

l linksToRemove

l plan

public List<Map<String,Object>>
checkPolicyViolations(Work-
flowContext wfc)

Evaluate policy violations that can be
incurred by the provisioning plan/-
project's actions

Evaluates policy violations
that the provisioning plan/-
project actions can incur.

l policies

l identityName*

l project

l plan (either plan or
project is required)

public void activateRoleAssignment
(WorkflowContext wfc)

Assigns a role or roles to
the identity.

l identity* (ID)

l role* (ID)

l detected (Boolean
indicating if role was
detected vs.
assigned)

public void deac-
tivateRoleAssignment(Work-
flowContext wfc)

Removes role assign-
ments from the identity.

l identity* (ID)

l role* (ID)

l detected (Boolean
indicating if role was
detected vs.
assigned)

public void refreshIdentity(Work-
flowContext wfc)

Performs an identity
refresh on one identity.

l identity (ID)

l identityName (either
identity or iden-
tityName is required)

public void refreshIdentities(Work-
flowContext wfc)

Performs an identity
refresh on a set of iden-

l identityName

l identityNames (CSV)

Workflow Library Methods

SailPoint Business Processes 57

Method / Usage Description

Expected Args

(Required Args are marked
with a *)

tities. Can specify one or
more identityNames, a fil-
terString, or a list of roles.
Processes the first of the
above listed options that is
non-null.

l filterString

l identitiesWithRoles
(CSV)

l (any one of these 4 is
required)

public Object com-
pileProvisioningProject(Work-
flowContext wfc)

Compiles a provisioning
plan into provisioning pro-
ject.

l plan

l identityName

public Object buildProvisioningForm
(WorkflowContext wfc)

Creates a form to display
provisioning policy ques-
tions.

When requiredOwner is
passed as an argument, a
form owned by this user is
returned. If no more forms
for this user exist, null is
returned.

When preferredOwner is
passed as an argument, a
form owned by this user is
returned. If there are no
remaining forms for that
owner, a form owned by a
different user can be
returned.

l project*

l template (name of
form to serve as
page template)

l owner

l preferredOwner
(owner or pre-
ferredOwner
required but mutually
exclusive)

public Object assim-
ilateProvisioningForm(Work-
flowContext wfc)

Collects data from com-
pleted a provisioning form
and stores answers with
questions on pro-
visioningProject.

l project*

l form*

public Object assim- Updates ApprovalSet with l project*

Workflow Library Methods

SailPoint Business Processes 58

Method / Usage Description

Expected Args

(Required Args are marked
with a *)

ilateAccountIdChanges(Work-
flowContext wfc)

any changes to accoun-
tIDs.

l approvalSet

public Object buildPlanApprovalForm
(WorkflowContext wfc)

Builds a form that rep-
resents all attributes in a
provisioningPlan for an
approval before the pro-
visioning occurs.

l plan*

l template

public Object assim-
ilatePlanApprovalForm(Work-
flowContext wfc)

Collects data from a form
and puts the data back into
the provisioningPlan.
Assumes buildPlanAp-
provalForm.

l form

l plan*

public Object provisionProject(Work-
flowContext wfc)

Called by the Identity
Update and LCMWork-
flows after provisioning
forms are completed. Pro-
visions the remaining
items in the project.

l project*

l noTriggers
(Boolean)

public Object finishRefresh(Work-
flowContext wfc)

Called by the Identity
Refresh workflow, after
approvals are done and
account completion attrib-
utes are gathered. Pro-
visions what it can and
completes the refresh pro-
cess.

l identitizer

l refreshOptions (map
of args for creating
new Identitizer if
needed)

l previousVersion

l project

public Object buildApprovalSet(Work-
flowContext wfc)

Called by the Lifecycle
Manager workflows. Builds
a simplified ApprovalSet
representation of the items
in the provisioning plan.

plan*

Workflow Library Methods

SailPoint Business Processes 59

Method / Usage Description

Expected Args

(Required Args are marked
with a *)

public Object pro-
cessApprovalDecisions(Work-
flowContext wfc)

Processes decisions made
during approval process
audit and react. Modifies
the project masterPlan and
recompiles the project if
the recompile argument is
set to true.

l project*

l dontUpdatePlan

l disableAudit

l approvalSet*

l recompile

public Object pro-
cessPlanApprovalDecisions(Work-
flowContext wfc)

Processes decisions made
during approval process
audit and modifies the
Used before the plan is
compiled into a pro-
visioningProject.

l plan*

l dontUpdatePlan

l disableAudit

l approvalSet*

public Object auditLCMStart(Work-
flowContext wfc)

Creates an audit event to
mark the start of an Life-
cycle Manager workflow.

l approvalSet*

l flow (name of applic-
able UI flow)

public Object auditLCMCompletion
(WorkflowContext wfc)

Creates an audit event to
mark the completion of
anLifecycle Manager work-
flow.

l approvalSet*

l flow

public void disableAllAccounts(Work-
flowContext wfc)

Used by lifecycle events to
disable managed accounts
for the identity specified in
the workflow.

none

public void enableAllAccounts(Work-
flowContext wfc)

Used by Lifecycle events
to enable all accounts on
the identity specified in the
workflow.

none

public void deleteAllAccounts(Work-
flowContext wfc)

Used by Lifecycle events
to delete all accounts on

none

Workflow Library Methods

SailPoint Business Processes 60

Method / Usage Description

Expected Args

(Required Args are marked
with a *)

the identity specified in the
workflow.

public ProvisioningPlan
buildEventPlan(WorkflowContext
wfc)

Go through all links that
the workflow's specified
Identity hold and creates a
plan to enable or disable
all of the Identity's
accounts. Specified by op.

op* (operation)

public void updatePasswordHistory
(WorkflowContext wfc)

Adds a password to the
link password history

plan*

public ProvisioningProject
assembleRetryProject(Work-
flowContext wfc)

Adds any account request
for an original provisioning
project that are retryable
and then adds them to a
new provisioning project.

Rarely used in custom
workflows.

project

public Object retryProvisionProject
(WorkflowContext wfc)

Executes the retry pro-
visioning project, created
in assembleRetryProject.

Rarely used in custom
workflow.

project

public Object mergeRetryPro-
jectResults(WorkflowContext wfc)

Merges results from the
retry project onto the main
project. Called between
retries.

Rarely used in custom
workflow.

l project*

l retryProject*

public Boolean requiresStatusCheck
(WorkflowContext wfc)

Identifies if the project con-
tains any Results that are
queued with a requestID
stored on the result.

project

Workflow Library Methods

SailPoint Business Processes 61

Method / Usage Description

Expected Args

(Required Args are marked
with a *)

public Object check-
ProvisioningStatus(WorkflowContext
wfc)

Calls down to the con-
nector for each Result in
the plan that is marked
queued with a requestID
specified.

project

public Integer getPro-
visioningStatusCheckInterval(Work-
flow
Context wfc)

Compute intervals
between status checks for
a request. The default is
60 minutes.

none

public Integer getPro-
visioningMaxStatusChecks(Workflow
Context wfc)

Computes the maximum
number of status checks
permitted during a request.
The default is infinite.

none

public Integer getPro-
visioningMaxRetries(Work-
flowContext wfc)

Computes the maximum
number of retries per-
mitted during a request.
The default is infinite.

none

public Integer getPro-
visioningRetryThreshold(Work-
flowContext wfc)

Computes the retry
threshold, the interval
between retries, to use for
a request. the Default is 60
minutes.

none

The methods are available for use. However these methods are rarely used in a custom workflow. It is recommended
that custom workflows the workflow subprocesses instead of calling the library methods directly.

Note: This information is included for reference purposes and to document the purpose of the
methods and what is passed to them. These explanations are also included to ensure that cus-
tomizations do not remove calls to important methods from the subprocess workflows and to
ensure that customizations only add other functionality around these method calls.

Workflow Library Methods

SailPoint Business Processes 62

IdentityRequest Library

Method / Usage Method / Usage

Expected Args

(Required Args are
marked with a *)

public Object createIdentityRequest(Work-
flowContext wfc)

Creates an IdentityRequest
object from current workflow con-
text information. Tracks status
and history of request pro-
cessing.

l project*

l flow

l source

l policyViolations

public Object updateIdentityRequestState
(WorkflowContext wfc)

Modifies the IdentityRequest's
state.

identityRequestId

public Object refreshIden-
tityRequestAfterApproval (Work-
flowContext wfc)

Refreshes the IdentityRequest to
include the provisioningEngine
that processes the item. Updates
the state and adds any expanded
attributes that are provisioned.

project

public Object refreshIden-
tityRequestAfterProvisioning (Work-
flowContext wfc)

After provisioning, copies inter-
esting task result information
back to the IdentityRequest.

project

public Object refreshIden-
tityRequestAfterRetry (WorkflowContext
wfc)

Scans the retry project and
updates the IdentityRequestItem
retry count.

project

public Object completeIdentityRequest
(WorkflowContext wfc)

Marks IdentityRequest status
complete. Puts final plan in
request and refreshes the
request based on the final pro-
ject.

l project

l policyViolations

l autoVerify
(Boolean)

Approval Library

Method / Usage Method / Usage
Expected
Args

public SailPointObject getOb- Returns the object being approved. none

Workflow Library Methods

SailPoint Business Processes 63

Method / Usage Method / Usage
Expected
Args

ject(WorkflowContext wfc)

public String getObjectClass
(WorkflowContext wfc)

Returns the simple class name of the object being
approved.

none

public String getObjectName
(WorkflowContext wfc)

Returns the name of the object being approved. none

public SailPointObject
getCurrentObject(Work-
flowContext wfc)

Returns the current persistent version of the object
held in the workflowCase (approvalObject).

none

public Identity getOb-
jectOwner(WorkflowContext
wfc)

Returns the current owner of the object being
approved. Uses database lookup.

none

public Identity getNewOb-
jectOwner(WorkflowContext
wfc)

Returns the object owner. In the workflow context,
the owner could be different than the database-recor-
ded owner.

none

public String getOb-
jectOwnerName(Work-
flowContext wfc)

Returns name of ObjectOwner from getOb-
jectOwner.

none

public String getNewOb-
jectOwnerName(Work-
flowContext wfc)

Returns name of NewObjectOwner from getNewOb-
jectOwner.

none

public boolean isOwn-
erChange(WorkflowContext
wfc)

Return true if object being approved has had an
owner change.

none

public boolean isSelfAp-
proval(WorkflowContext wfc)

Returns True if the user who launches workflow is
the same as the owner of the object being approved.
Used to bypass an owner approval. Assumes that
the user will approve if the user is the one who is ini-
tiating the request.

none

Workflow Library Methods

SailPoint Business Processes 64

Policy Violation Library

Method / Usage Method / Usage

Expected Args

(Required Args are marked with a *
)

public Object delete
(WorkflowContext
wfc)

Deletes the current approval object
associated with this workflow.

none

public Object ignore
(WorkflowContext
wfc)

Ends the workflow associated with
the current approval object without
performing any actions.

none

public Object mit-
igateViolation(Work-
flowContext wfc)

Mitigates by temporarily allowing a
policy violation.

l expiration*

l comments

public Object getRe-
mediatables(Work-
flowContext wfc)

none

public Object getRe-
mediatables(Work-
flowContext wfc)

l remediator

l actor

l comments

l remediations*

Use if remediator argument is not
specified and actor is. Use remedi-
ator in new method calls.

Role Library

Method / Usage Method / Usage

Expected Args

(Required Args
are marked with a
*)

public Object launchIm- Starts an impact analysis task for a role none

Workflow Library Methods

SailPoint Business Processes 65

Method / Usage Method / Usage

Expected Args

(Required Args
are marked with a
*)

pactAnalysis(WorkflowContext
wfc)

in workflow.

public Object getRoleDifferences
(WorkflowContext wfc)

Calculates the differences between a
role held in workflow and the database
version of the role.

none

public Object auditRoleDif-
ferences(WorkflowContext wfc)

Creates one audit event for each attrib-
ute difference between role states. Com-
pares workflow vs database.

l source

l action

l target

l string1

public Approval buildOwn-
erApproval(WorkflowContext wfc)

Sets up an approval for the owner of an
object. Currently used only for roles.

none

public List<Approval> buildAp-
plicationApprovals(Work-
flowContext wfc)

For role approvals only. Builds an
approval structure for the owners of
each application referenced in the role
profiles. Normally processed as par-
allelPoll to allow application owners to
submit comments or modify the role
without terminating the approval pro-
cess.

none

public void enableRole(Work-
flowContext wfc)

Marks role as enabled. role (name)

public void disableRole(Work-
flowContext wfc)

Marks role as disabled. role (name)

public void setRoleDis-
abledStatus(WorkflowContext
wfc)

Marks role with disabled status indicated
in the disabled arg.
true = disabled
false = enabled

l role (name)

l disable
(Boolean)

public void
removeOrphanedRoleRequests

Removes incomplete requests. Used to
activate/deactivate roles that no longer

none

Workflow Library Methods

SailPoint Business Processes 66

Method / Usage Method / Usage

Expected Args

(Required Args
are marked with a
*)

(WorkflowContext wfc) exist.

public String getAp-
provalAuditAction(Work-
flowContext wfc)

Called by the post-approval audit steps,
Audit Failure and Audit Success, of Role
Modeler. Owner Approval workflow to
determine what type of action should be
recorded in audit log.

If the role is marked as disabled, returns
disableRole.

if the role is NOT marked as disabled,
returns updateRole .

none

LCM Library
Currently, the Lifecycle Manager Library contains no public methods. All of its methods were moved to the Standard
Workflow Handler.

Monitoring Workflows

SailPoint Business Processes 67

Monitoring Workflows

After a workflow is initiated, the workflow can launch to completion quickly. Sometimes a workflow can take additional
time to complete its specified actions. Approval steps often create a delay in the processing while the workflow waits
for the approver to review the work item and make a decision on it.

To observe a workflow in flight and understand how much of the process is complete and what actions are pending,
you can examine the Task Result for the workflow on the Setup > Tasks > Task Results page. The TaskResult for a
workflow exists for a period of time following the successful completion of the workflow. Based on the retention period
set, the TaskResult can be purged soon after the process launches to completion. While the workflow is still in pro-
gress, the TaskResult continues to exist and can be examined for current step and status information.

Viewing the Workflow Case XML
You can examine the workflow case in XML format from the IdentityIQ console or from the Debug pages.The status of
each step can then be determined from the data recorded in the workflow case.

To get theworkflowcase XML from the console:

1. Launch the console.

2. List the workflow cases.

3. Get the specific workflow case in question by name. See the following example.

IIQ console
> List workflowcase
[system will list all in-flight workflowcases by ID and name]
> get workflowcase "[workflowcase name]"[system will display the XML for the workflow
case]

To view the workflowcase XML from the IdentityIQ Debug pages:

1. Select WorkflowCase from the object list.

2. Click the specific workflow case from the list to display its XML.

Advanced Workflow Topics

SailPoint Business Processes 68

Advanced Workflow Topics

This section includes these advancedWorkflow topics:

l Loops within Workflows

l Launching Workflows from a Task or Workflow

l Workflow Forms

Loops within Workflows
A loop occurs when a step transitions back to a step that executed previously. The state of that step is reinitialized and
the step is executed again. A loop can transition back any number of steps. You define a loop transition the same way
you would any other transition. However, you must just select a target step that appears before the loop transition in
the process designer.

In most case, when you create a loop transition, you want to give it a conditionalWhen expression. If a loop transition
is unconditional, the workflow can enter an infinite loop and not be able to finish.

Launching Workflows from a Task or Workflow
You can launch workflows from tasks or other workflows without using a system event to trigger the workflow.

Workflows Launched from Custom Tasks

You can launch workflows from a custom task in IdentityIQ. Because tasks are compiled java classes, the custom task
must be written as a Java method.

To create a workflow from a custom task:

1. Create a WorkflowLaunch object in the Java method.

2. Populate the object with the data the workflow requires.

3. Use theWorkflower class to launch the workflow.

It is often necessary for one workflow to launch another workflow. This can be performed in Beanshell using code sim-
ilar to the previous example. However, using the workflow library method <i>scheduleWorkflowEvent</i> is easier.
Not only does this method launch a workflow, it also allows you to delay the launch until a time in the future.

To have one workflow to launch another workflow, create a step and select scheduleWorkflowEvent as the action.
This method requires the following arguments:

Advanced Workflow Topics

SailPoint Business Processes 69

 import java.util.HashMap;
 import sailpoint.api.sailpointContext;
 import sailpoint.api.Workflower;
 import sailpoint.integration.ProvisioningPlan;
 import sailpoint.integration.ProvisioningPlan.AccountRequest;
 import sailpoint.integration.ProvisioningPlan.AttributeRequest;
 import sailpoint.object.Identity;
 import sailpoint.object.Workflow;
 import sailpoint.object.WorkflowLaunch;
 import sailpoint.tools.GeneralException;
 import sailpoint.tools.xml.XMLObjectFactory;

 HashMap launchArgsMap = new HashMap();

 String myIdentityName = "T339222";
 Identity myIdentity = context.getObjectByName(Identity.class, myIden-
tityName);

 //Create Provisioning Plan and add needed attribute values
 ProvisioningPlan plan = new ProvisioningPlan();
 plan.setIdentity(myIdentity);
 AccountRequest accountRequest = new AccountRequest();
 AttributeRequest attributeRequest = new AttributeRequest();

 accountRequest.setApplication("IIQ");
 accountRequest.setNativeIdentity(wbIdentity);
 accountRequest.setOperation("Modify");

 attributeRequest.setOperation("Add");
 attributeRequest.setName("assignedRoles");
 attributeRequest.setValue("Benefits Clerk");

 accountRequest.add(attributeRequest);
 plan.add(accountRequest);

 //Add needed Workflow Launch Variables to map of name/value pairs
 launchArgsMap.put("allowRequestsWithViolations","true");
 launchArgsMap.put("approvalMode","parallelPoll");
 launchArgsMap.put("approvalScheme","worldbank");
 launchArgsMap.put("approvalSet","");
 launchArgsMap.put("doRefresh","");
 launchArgsMap.put("enableRetryRequest","false");
 launchArgsMap.put("fallbackApprover","admin");
 launchArgsMap.put("flow","RolesRequest");
 launchArgsMap.put("foregroundProvisioning","true");
 launchArgsMap.put("identityDisplayName","John.Smith");
 launchArgsMap.put("identityName","John.Smith");
 launchArgsMap.put("identityRequestId","");
 launchArgsMap.put("launcher","admin");
 launchArgsMap.put("notificationScheme","user,requester");
 launchArgsMap.put("optimisticProvisioning","false");
 launchArgsMap.put("plan",plan);
 launchArgsMap.put("policiesToCheck","");

Advanced Workflow Topics

SailPoint Business Processes 70

 launchArgsMap.put("policyScheme","continue");
 launchArgsMap.put("policyViolations","");
 launchArgsMap.put("project","");
 launchArgsMap.put("requireViolationReviewComments","true");
 launchArgsMap.put("securityOfficerName","");
 launchArgsMap.put("sessionOwner","admin");
 launchArgsMap.put("source","LCM");
 launchArgsMap.put("trace","true");
 launchArgsMap.put("violationReviewDecision","");
 launchArgsMap.put("workItemComments","");

 sailpoint.object.ProvisioningPlan spPlan = new sail-
point.object.ProvisioningPlan();
 spPlan.fromMap(plan.toMap());
 launchArgsMap.put("plan", spPlan);

 //Create WorkflowLaunch and set values
 WorkflowLaunch wflaunch = new WorkflowLaunch();
 Workflow wf = (Workflow) context.getObjectByName(Work-
flow.class,"myWorkflowName");
 wflaunch.setWorkflowName(wf.getName());
 wflaunch.setWorkflowRef(wf.getName());
 wflaunch.setCaseName("LCM Provisioning");
 wflaunch.setVariables(launchArgsMap);

 //Create Workflower and launch workflow from WorkflowLaunch
 Workflower workflower = new Workflower(context);
 WorkflowLaunch launch = workflower.launch(wflaunch);

 // print workflowcase ID (example only; might not want to do this in the
task)
 String workFlowId = launch.getWorkflowCase().getId();
 System.out.println("workFlowId: "+workFlowId);

Workflows Launched by Other Workflows

Installations often have one workflow start another workflow using the scheduleWorkflowEvent method in the Stand-
ard Workflow Handler. One of the initiating workflow steps launches the method through a call action.

Arguments to the step include the following:

Name Value

workflow Name of the workflow to launch.

requestName
Name to be assigned to the request.

If not specified, the name of workflow is the default.

scheduleDate
Date and time you want the workflow to launch. Must be specified
with a java.util.Date value. If this argument is not set, the workflow

Advanced Workflow Topics

SailPoint Business Processes 71

Name Value

launches immediately.

scheduleDelaySeconds
An alternative to using scheduleDate. When set, the value is the num-
ber of seconds to delay before launching the workflow.

caseName

Specify a user friendly name for workflowCase to be displayed in the
user interface.

If no name is specified, the default is the name of workflow.

launcher
Name of the identity to be displayed as the launcher of the new work-
flow case. If this argument is not specified, the launcher of the ini-
tiating workflow is used.

A workflow that is launched by another workflow is different from a workflow that is launched as a subprocess. If a
workflow is launched as a subprocess, the calling workflow waits until the subprocess is completed. After the workflow
returns control to the caller, the processing continues.

A workflow that is launched by another workflow causes a completely separate workflow to begin launching. After the
new workflow is started, the original or calling workflow moves on to its next step.

Workflow Forms
Standard work item forms are available for presenting approval or other data requests to approvers. However, some
installations prefer to use custom forms for these activities. Based on the type of the data collection effort, a custom
form might be required. You can build a custom form using a <Form> element in the XML that is embedded within the
<Approval> element.

Note: The <Approval> element can be used to collect data from a user, even if the workflow is
not an approval. You generally use custom forms for these activities because the normal
approval forms do not apply. However, you can also use custom forms for traditional approval
activities when you need a different presentation format.

The basic elements in a Form definition are:

<Form>
 <Attributes> (map of name/value pairs that influence the form renderer)
 <Button> (determine form processing actions)
 <Section> (Subdivision of form; may contain nested Sections and Fields)
 <Field> (may contain Attributes map, Script to set value, Allowed Values Defin-
ition script, and Validation Script)

For detailed information about working with forms, see the Forms documentation.

Advanced Workflow Topics

SailPoint Business Processes 72

Process Variable and Step Forms

You use forms added to steps on the Process Designer tab in the Business Process Editor to request data that a pro-
cess needs from a user. For example, you can add a form to a step to request a value for a missing attribute.

However, to present information on the Basic Views of the Process Variables tab and the Arguments tab of the Step
Editor, you use process variable and step forms.

To simplify the information displayed on the Process Variables tab:

l Variables are displayed in more logical groups.

l Variables that are rarely, if ever, modified are hidden.

Changes made in the Basic View are persisted to the Advanced View and more complex configuration can be per-
formed there if needed.

The step forms are referenced from the workflows or stepLibraries. These forms define the form that is presented on
the Arguments tab of the Step Editor panel and works similar to the process variable forms.

Both of these forms are referenced from workflows using the configForm variable. The forms can be defined, viewed
and edited on the IdentityIQ debug page.

	Business Process Management
	Workflow Basics
	Using the Business Process Editor with Workflows

	Editing Workflow XML
	Accessing the XML
	Dollar-Sign Reference Syntax
	XML Content
	Workflow Element
	Variable Definitions
	Workflow Description
	Rule Libraries
	Step Libraries
	Step Elements
	Approval Steps

	Workflow Library Methods
	Standard Workflow Handler
	Identity Library
	IdentityRequest Library
	Approval Library
	Policy Violation Library
	Role Library
	LCM Library

	Monitoring Workflows
	Viewing the Workflow Case XML

	Advanced Workflow Topics
	Loops within Workflows
	Launching Workflows from a Task or Workflow
	Workflow Forms

