

Step by Step Guide: IdentityIQ Plugin
development

Author: Kalyan Kumar Saha

DISCLAIMER: This document does not intend to replace SailPoint published knowledge resources

available in Compass community. This document is solely for giving a direction to beginners to start

exploring plugin based on my experience and learning.

Overview
IdentityIQ plugin is one of the most powerful features that provide immense freedom in

implementing “Non-standard IAM requirements” to be embedded within IIQ. “Non-Standard IAM

requirements” term refers to those use cases which are independent but do not typically relate to

identity management.

For example, setting up an interface to keep a track of daily IIQ login sessions (who accesses IIQ

when). This requirement can typically be resolved by using an access manager, but plugin allows

developing a solution within IIQ if access manager route is not an option.

Knowledge Resources
Plugin development bible is here. The hyperlink of each component of plugin is well described here.

In this article, we shall understand each step with example i.e. “Contractor Management System”

so that plugin development techniques become crystal clear.

“Contractor Management System” (CMS) is aimed to automate onboarding contractors into IIQ.

The plugin presents an interactive UI to enter contractor details, validates user inputs against

backend store to ensure data integrity and then submits an identity creation request to SailPoint.

Knowledge Pre-requisite
• Fair knowledge on RDBMS (DDL, DML etc.)

• Good knowledge in Java Programming and JDBC

• Good knowledge around web development i.e. HTML, JavaScript, CSS

• Good knowledge around IIQ basics and APIs

[Note: AngularJS is apt for IIQ plugins as it is recommended for Single Page Applications (SPA).

Most of the SailPoint published IIQ plugins leverage AngularJS. So, it is good time to learn it from

here.]

Test Bed Details
• Apache Tomcat 7.0

• MySQL Database 5.6

• SailPoint IdentityIQ 7.2

• XHTML, Angular JS, Java 1.8

Plugin Package Structure
Any plugin needs to be packaged in zipped format (.zip) containing below folders:

https://community.sailpoint.com/t5/Plugin-Framework/Plugin-Development/ta-p/145288
https://community.sailpoint.com/t5/Plugin-Documents/Plugin-Developer-Guide/m-p/79347
https://www.w3schools.com/angular/

• db - This folder contains the DDL scripts to create database objects to persist your plugin

data. IIQ runs the script only once during plugin installation and creates the DB objects like

tables, indexes, constraints etc. under ‘identityiqplugin’ database. The script needs to

reside within ‘install’ subfolder and the file name MUST be install.<dbvendor> where

<dbvendor> is one of following based on environment: mysql, db2, oracle, sqlserver

• import – This folder contains the SailPoint object XMLs to be imported e.g. Configuration,

QuickLink, SPRight, Capability, Rule, TaskDefinition etc. Objects present under ‘install’

subfolder will be imported into IIQ during plugin installation and further update of the

same plugin will import objects from ‘upgrade’ subfolder. So, it is very important that both

subfolders contain same set of XMLs.

• lib – This folder contains jar files bundling compiled Java classes for plugin REST services,

task/service executors, any third-party Java library etc.

• ui – This folder contains at least one xhtml file with name ‘page.xhtml’ mandatorily. The

XHTML file is launched to render UI when a plugin is accessed. Modular approaches can be

adopted to keep UI elements separated into multiple xhtml files based on requirement. ‘css’,

‘js’ subfolders are generally used to keep any CSS file and Javascript libraries respectively

though it is not mandatory to have those folders but good to follow this practice.

• manifest.xml – This is plugin definition XML file containing version, REST service class

declaration, executors, runtime settings etc. Refer attached CMS plugin manifest.xml file.

IIQ Database Table Reference
Three IIQ DB tables are involved in persisting plugin configuration details:

1. When a plugin is installed, configuration details are saved in identityiq.spt_plugin table.

2. identityiq.spt_persisted_file table contains the plugin zip file related metadata

3. Plugin zip file content is saved in identityiq.spt_file_bucket table as BLOB under ‘data’

column. IIQ refers to the BLOB during runtime to access plugin files like page.xhtml, load

plugin Java classes without needing to restart IIQ web container (e.g. Tomcat).

Steps towards First Successful Plugin
• Learn a JavaScript framework like JQuery or AngularJS. It helps to design interactive UI

along with accomplish REST calls to plugin webservices.

• Create a .sql file under ‘db\install’ folder and put all the DDL statements to create DB

objects.

CMS plugin needs three tables to implement the functionality. So, install.mysql contains

necessary CREATE TABLE statements.

• Start UI development by creating a file page.xhtml under ‘ui’ folder and put UI html

elements (text boxes, text fields, buttons checkboxes etc.) in it. This must accompany the

JavaScript code to allow data flow from view (UI) to model (Java backend) and vice versa by

means of REST webservices. It is better to keep JavaScript code separate in a .js file instead

of squeezing it within <script> tag of the html file.

• If CSS is used to make UI attractive, then make sure no CSS selector name collides with

IdentityIQ CSS selectors as it would screw up existing IIQ pages if any conflict occurs.

In CMS plugin, you will see the selector names are prefixed with cms to make it unique.

• Create IIQ objects like QuickLink, SPRight, Capability, Workflow, and TaskDefinition etc. to

support plugin activity. Refer to attached CMS plugin to understand more on this

• Start writing REST plugin web services code once basic UI is ready. From this part, Java

development work starts. An IDE (e.g. Eclipse) can be used to complete Java coding

o Plugin front-end interacts with IIQ using REST webservice. User inputs are passed

to the webservice as part HTTP request parameter in case of GET or request body in

case of POST for processing.

o Feel free to create your own package structure. A Java class needs to extend

sailpoint.rest.plugin.BasePluginResource to create webservice backend.

o Annotations are used to create service endpoints and method to perform business

logic. For CMS plugin, two REST resources are created: one to perform

insert/update/query to CMS plugin tables and another one to interact with IIQ to

validate user entered contractor data and create contractor identity cube.

o There are a few built in methods available to get plugin DB connection, SailPoint

contexts etc. which make coding easy

• If plugin task executor is needed, then a Java class needs to extend

sailpoint.task.BasePluginTaskExecutor interface and implement execute() method. Task

executor is needed when any task is required to perform any bulk work in background to

support plugin functionality.

In CMS plugin, a task executor is created to synchronize contract data from an external DB

table contractdb.contract_master into plugin DB table cms_contract_master. CMS plugin later

uses these data to validate contractor onboarding request.

• All Java classes would need to be bundled in a jar and keep that jar in ‘lib’ folder of plugin

package

• Create manifest.xml and put configuration details correctly

• Once all files are ready, create a .zip with the above-mentioned folders to get ready for

plugin installation

• While development/troubleshooting is in progress, above steps are repetitive until full

requirement is completely and correctly implemented. Either a build script can be

developed (discussed here) or use software (e.g. WinZip) to create plugin zip manually

every time before installing the plugin

• If JavaScript injection is to be used to create menu option, a snippet file should also be kept

under ‘ui\js’ folder and the same needs to be referred in manifest.xml file under <Snippet>

tag

https://community.sailpoint.com/t5/Plugin-Documents/Plugin-Developers-Guide-The-Build-File/td-p/74382

Screenshots
There are two ways to launch this plugin: a. A menu item created through JavaScript Injection or b.

quicklink. Note here, both quicklink or menu item will be visible only those users having

‘ViewContractorManagementPluginRight’ or System administrators.

Both basically invokes plugin through an URL

http://<host>:<port>/identityiq/plugins/pluginPage.jsf?pn=<pluginname> where <pluginname> is

the name attribute value in manifest.xml file

The plugin launches page.xhtml to render UI

Red colored fields are mandatory fields. Until all mandatory fields are provided with correct values,

‘Preview’ button will not be clickable. The form validates ‘Contract#’ field against a CMS table data

i.e. cms_contract_master and ‘Manager EID’ field against a valid manager cube present in IIQ

through plugin REST call.

Once all data are entered, ‘Preview’ button will be enabled and a read-only form will be shown up to

verify the details upon clicking on the button.

User can go back and re-enter details if needed or click on ‘Create’ button. Upon clicking on the

button, all buttons and inputs fields will be disabled to prevent any further change. It will create

contractor record in CMS table cms_contractor_master as well an identity cube in IIQ. The employee

ID is generated dynamically, and the success message shows the allocated employee ID.

A task result is also created to track the progress of this contractor creation in IIQ.

 Plugin Artifacts

