
Forms
Version: 8.4

Revised: September 2023

This document and the information contained herein is SailPoint Confidential Information

Copyright and Trademark Notices

Copyright © 2023 SailPoint Technologies, Inc. All Rights Reserved.

All logos, text, content, including underlying HTML code, designs, and graphics used and/or depicted on these written
materials or in this Internet website are protected under United States and international copyright and trademark laws
and treaties, and may not be used or reproduced without the prior express written permission of SailPoint Tech-
nologies, Inc.

“SailPoint Technologies,” (design and word mark), “SailPoint,” (design and word mark), "Identity IQ,” “IdentityNow,”
“SecurityIQ,” “Identity AI,” “Identity Cube,” and “SailPoint Predictive Identity” are registered trademarks of SailPoint
Technologies, Inc. “Identity is Everything,” “The Power of Identity,” and “Identity University” are trademarks of
SailPoint Technologies, Inc. None of the foregoing marks may be used without the prior express written permission of
SailPoint Technologies, Inc. All other trademarks shown herein are owned by the respective companies or persons
indicated.

SailPoint Technologies, Inc. makes no warranty of any kind regarding these materials or the information included
therein, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
SailPoint Technologies shall not be liable for errors contained herein or direct, indirect, special, incidental or con-
sequential damages in connection with the furnishing, performance, or use of this material.

Patents Notice. https://www.sailpoint.com/patents

Restricted Rights Legend. All rights are reserved. No part of this document may be published, distributed, reproduced,
publicly displayed, used to create derivative works, or translated to another language, without the prior written consent
of SailPoint Technologies. The information contained in this document is subject to change without notice.

Use, duplication or disclosure by the U.S. Government is subject to restrictions as set forth in subparagraph (c) (1) (ii)
of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 for DOD agencies, and sub-
paragraphs (c)(1) and (c)(2) of the Commercial Computer Software Restricted Rights clause at FAR 52.227-19 for
other agencies.

Regulatory/Export Compliance. The export and re-export of this software is controlled for export purposes by the U.S.
Government. By accepting this software and/or documentation, licensee agrees to comply with all U.S. and foreign
export laws and regulations as they relate to software and related documentation. Licensee will not export or re-
export outside the United States software or documentation, whether directly or indirectly, to any Prohibited Party and
will not cause, approve or otherwise intentionally facilitate others in so doing. A Prohibited Party includes: a party in a
U.S. embargoed country or country the United States has named as a supporter of international terrorism; a party
involved in proliferation; a party identified by the U.S. Government as a Denied Party; a party named on the U.S.
Department of Commerce’s Entity List in Supplement No. 4 to 15 C.F.R. § 744; a party prohibited from participation in
export or re-export transactions by a U.S. Government General Order; a party listed by the U.S. Government’s Office
of Foreign Assets Control as ineligible to participate in transactions subject to U.S. jurisdiction; or any party that
licensee knows or has reason to know has violated or plans to violate U.S. or foreign export laws or regulations.
Licensee shall ensure that each of its software users complies with U.S. and foreign export laws and regulations as
they relate to software and related documentation.

Contents

Forms 1

Specifying Custom Forms 2

Role / Application Provisioning Policies 2

Identity Provisioning Policy 4

Workflow Forms 4

Report Forms 6

Components of a Form Definition 7

Form 7

Attributes 7

Buttons 9

Sections 9

Fields 11

Working with the Form Editor 25

Detail View 25

Expandable Tree 25

Edit Options 26

Form Examples 30

Application and Role Provisioning Policy 30

Identity Provisioning Policy 31

Workflow Form 34

Report Forms 35

Form Models 38

Identity Model Structure 39

Accessing Identity Model Attributes 40

Referencing a Form Model 41

Forms

SailPoint Forms 1

Forms

Forms are used to present items to users for input in several components of IdentityIQ. They are used with:

l Application and role provisioning policies

l Identity provisioning policy (only applicable for installations using Lifecycle Manager)

l Data entry and approvals in workflow steps

l Present simplified views for process variable and step argument editing in workflows

l Report filter specification

The form implementation and available features varies slightly in these areas, so some features might apply to one
use and not to the others. This is noted throughout this section.

For more information about using Forms with IdentityIQ, refer to the forms documents on the SailPoint customer sup-
port site or contact your support agent for more information.

Specifying Custom Forms

SailPoint Forms 2

Specifying Custom Forms

Form specification is different for each available use. All types of provisioning policies can be specified through the
IdentityIQ user interface. In all cases, some of the more advanced and custom forms for workflows can be generated
through the Business Process Editor. Some of the more advanced options. however, are only available through sub-
sequent editing of the XML definition. Workflow forms created through the Business Process Editor are embedded
within the workflow XML.

Alternatively, they can be defined as independent form objects which can be referenced by multiple workflows, by cre-
ating them directly in XML and importing them into IdentityIQ. Report forms must be created as external XML doc-
uments and imported into IdentityIQ.

Role / Application Provisioning Policies
Provisioning forms are presented to a user when a provisioning request cannot be completed without user input. The
data collection fields that are presented on the form come from the role or application's Provisioning Policy, which is
defined by the <Form> element inside the Bundle (role) or Application object's XML. The actual form presented to the
user during provisioning of roles or application accounts are system-generated at run-time based on skeleton forms
that are predefined in IdentityIQ. Requests made through LCM are built with the Identity Update form. Requests that
come through the Identity Refresh workflow use the Identity Refresh form. These forms contain a read-only section at
the top that displays identifying information about the request, for example, Account ID, First name, and Last name.
The fields defined in the provisioning policy forms are added to the form at run time, when the form is presented to a
user.

Provisioning policy forms define the fields required for the role or application account to be provisioned, often including
a default value or script / rule for calculating a value. When a field cannot be calculated by the system during pro-
visioning of an account or role, it must be presented to a user through a form to get the required value. When multiple
accounts or roles are part of the same provisioning request, the form might display a collection of fields pulled from
various provisioning police forms. On the form, the fields are, by default, grouped in sections according to the applic-
ation or role to which they belong. This grouping can be overridden by specifying a section attribute on each of the
fields, naming the section into which each field should be placed. See the section attribute description in Fields.

Defining Application Provisioning Policy

An application provisioning policy can be defined for an application on the Provisioning Policies tab of the Application
Configuration page, Applications > Application Definition. Separate policies can be defined for create, update, and
delete requests. Additionally, provisioning policies can be specified for creating or updating groups.

The required fields should be specified in the policy with the appropriate field attributes defined. These attributes can
include a default value or a script / rule to calculate a default value for the field that can be based on the Identity attrib-
utes for the Identity for whom the request is being made. The field Name should match the corresponding native

Specifying Custom Forms

SailPoint Forms 3

attribute on the application. If Review Required is selected, the field is always presented on a form during pro-
visioning-request processing, even if a default value is provided or calculated successfully.

For creation-type operations you can specify dependencies between applications and application attributes that imply
ordering of the provisioning requests.

Field Properties and Value Properties

The provisioning policy field attributes are grouped into two categories: Field Properties and Value Properties.

Field Properties describe field meta data. This includes the field's name, display name, tool tip help text, type, and
owner. It also includes indications of whether the field is single or multi-valued, read-only, hidden, required, or review
required. Fields can also be marked with a flag to indicate whether changes to the field value should cause the form to
be reloaded. The Read-Only and Hidden attributes can be set to a static value (True or False) or can be defined pro-
grammatically through a rule or script. The rule and script options are used to dynamically hide and show the field, or
change its edit properties, when the form is reloaded based on changes to values of other fields.

The Value Properties section includes properties specifically related to the field's value. A default value, a set of per-
mitted values, and the field's validation logic can all be set here. The Dynamic attribute determines whether the field's
value should be reevaluated on every form reload, when the form is reloaded based on a change in another field's
value. It should only be selected when the field's value is rule or script based, such that it might change during the form
processing based on other field values entered there.

The default value can be specified as a static value or can be calculated programmatically by a rule or script. In an
account creation provisioning policy, an additional option, Dependent, is available as part of the ordered provisioning
implementation, which is only available on account create provisioning policies. When the dependent option is selec-
ted, an application and attribute must also be selected and the value of the field is set to that attribute value for the
Identity. Only applications on which this application is dependent are available for selection here.

The Allowed Values list can be specified as a list of values or can be set dynamically by a rule or script. Field val-
idation is optional and can be managed by a reusable rule or with a script.

Defining Role Provisioning Policies

Role provisioning policies are specified through the Role Editor: go to Setup > Roles, select the role name, and click
Edit Role. Then click Add Provisioning Policy and specify the fields for the policy.

Select the application to which the role provisioning policy applies and then specify the fields for the policy. Fields are
specified for role provisioning policies exactly as they are specified for application provisioning policies. Role pro-
visioning policies and application provisioning policies are not the same or to be used interchangeably, however.

Role provisioning is not intended for initial role assignment or for the provisioning of account attributes that are not enti-
tlements. Using role provisioning and application provisioning interchangeably cause conflicts and should be avoided.

Specifying Custom Forms

SailPoint Forms 4

Role provisioning is designed to be used for profiles that use complex logic, where it is unclear what should be pro-
visioned or deprovisioned. The role provisioning policy is used to state what to provision, "x and y" or "p and q," and to
use the contents of the Identity to make that decision.

Identity Provisioning Policy
The Identity Provisioning Policies are optional forms that can be specified to define the fields that must be provided
when an Lifecycle Manager Create or Edit Identity request is submitted. When no Identity Provisioning Policy is
defined for the create function, IdentityIQ automatically builds a form that includes the entire set of defined Identity
attributes (standard and extended) for the installation. The auto-generated update provisioning policy form contains
only identity attributes marked as editable. An Identity Provisioning Policy can be defined to select a subset of those
fields, to affect the presentation of those fields, for example, grouping in sections or multi-column layout, or to build in
some logic to auto-populate some of the fields.

A third identity provisioning policy also exists to support self-service registrations for IdentityIQ. This form is presented
when self-service registration is enabled and a new user requests an IdentityIQ account. The form prompts the user
for the information required to create a new user account for the installation.

To create an Identity Provisioning Policy, go to Identity Provisioning Policy of the Lifecycle Manager configuration
page. Three policies are available: Create Identity, Update Identity, and Self-service Registration. If a policy has
already been defined, the name is displayed. Click the name to open and edit the policy. If no policy has been defined
for one of these types, click Add Policy to add a new one. Add fields to the policy, defining field attributes as needed
on the field definition parallels for an application or role provisioning policy.

Identity Provisioning Policy forms are saved as independent form objects. System Configuration entries (entry key-
y="createIdentityForm", "updateIdentityForm", and "registerForm") point to the appropriate forms for each identity pro-
visioning policy by name. The identity provisioning policy forms are saved as <Form> objects inside the UIConfig
attributes map under the keys lcmCreateIdentityProvisioningPolicy and lcmUpdateIdentityProvisioningPolicy on the
IdentityIQ Debug pages. These form definitions can be edited directly to implement some of the presentation options,
for example, multi-columns or sections. The configurable option available on the user interface do not include these
features.

Note: Form features related to the Section attribute (which includes subdividing the form into sec-
tions and creating multi-column form configurations) are not supported through the user inter-
face. These must be managed directly in the Form Object XML. Any fields added through the
user interface after dividing the form into sections are automatically added to the first section.
These fields can be moved to other sections by editing the XML.

Workflow Forms
Several standard work item renderers are provided with IdentityIQ for presenting approvals or other data requests to
users. These are written as JSF pages. It is possible to write custom forms in JSF, specifying the JSF page as the

Specifying Custom Forms

SailPoint Forms 5

renderer for the approval. This is rarely done. Customers who want to use custom forms generally specify these
through a Form object.

Forms are used in workflows to present data-gathering pages to a user and define data presentation for approval activ-
ities. In many cases, implementations rely on the standard approval work item forms for normal approval actions so do
not need to implement custom forms for their approval steps, but they still might choose to use custom forms for non-
approval data-gathering activities to which the normal approval forms do not apply. A custom form can be added to a
workflow through the Business Process Editor (Setup > Business Processes) by right-clicking a step and choosing
Add Form or by adding a form element to a step in the Workflow XML.

Whether the form is specified for an approval or a data-gathering activity, the form element must be embedded within
an approval element in the XML. The user interface auto-creates it within an approval element. The workflow XML to
specify a custom form looks like this

?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE SailPoint PUBLIC "sailpoint.dtd" "sailpoint.dtd">
<sailpoint>
<Workflow explicitTransitions="true" libraries="Identity" name="Example Workflow" type-
e="IdentityLifecycle">
...
 <Step name="Display Form">
 <Approval name="Please enter some data" owner="admin" return="selectedApprover" send-
d="trace ">
 <Form>
 ... <!-- Form content goes here -->
 </Form>
 </Approval>
 </Step>

A custom form can also be created as an independent form object, defined in a separate XML document and imported
into IdentityIQ, visible through the console or the Debug pages by viewing the Form objects, and referenced in the
approval element as an argument like this:

<Approval…>
 <Arg name='workItemForm' value='Custom Form Name'/>
 ...
 </Approval>

This option promotes form reuse across workflows. However, these independent form objects cannot be edited
through the Business Process Editor like the embedded forms can.

Process Variable and Step Forms in Workflows

While forms added to steps on the Process Designer tab of the Business Process Editor are used to request data
required by the process from a user, such as a value for a missing attribute, the process variable and step forms are

Specifying Custom Forms

SailPoint Forms 6

used to define the information presented on the Basic Views of the Process Variables tab and the Arguments tab of
the Step Editor.

These forms are created as an independent form object, defined in a separate XML document and imported into Iden-
tityIQ. They are visible through the console or the Debug pages by viewing the Form objects.

The process variables forms are used to simplify the information displayed on the Process Variables tab by hiding
those variables that are rarely, if ever, modified and displaying variables in more logical groups. Changes made in the
Basic View are persisted to the Advanced View and more complex configuration can be performed there if needed.

The step forms are referenced from the workflows or stepLibraries. These forms define the form that is presented on
the Arguments tab of the Step Editor panel and works similarly to the process variable forms.

Both of these forms are referenced from workflows using the configForm variable. The forms can be defined and
viewed and edited on the IdentityIQ debug page.

Report Forms
Report definitions often include a reference to a Form object for displaying the report-specific filter options to the report
user. In the Report XML, the form is referenced with a <ReportForm> tag:

<ReportForm>
<Reference class="sailpoint.object.Form" id="39535985298ff9839ff98dd" name="My Custom
Report Form" />
</ReportForm>

The Form is defined separately in its own XML document and imported into IdentityIQ as a Form object. Each section
within the form is created as a separate page in the Edit Report window, where you specify the filters that are applied
to the report. The report-specific forms are always merged with the Report Form Skeleton, which defines the Standard
Properties and Report Layout pages that apply to every report.

Components of a Form Definition

SailPoint Forms 7

Components of a Form Definition

The basic elements in a Form definition are:

<Form>
 <Attributes> (map of name/value pairs that influence the form renderer)
 <Button> (determine form processing actions)
 <Section> (Subdivision of form; may contain nested Sections and Fields)
 <Field> (may contain Attributes map, Script to set value, Allowed Values Defin-
ition script, and Validation Script)

Within each of these sections of the form definition, certain attributes might apply to some form uses and not to others.
The table below provides a high-level overview of which of the available form elements can be specified for each.

Form Usage
Form Component Availability

Field Button Section Field

Application and role provisioning policies (Form) X
Identity provisioning policy X* X* X X

Workflow approval X X X X

Report X X

* Limitations on the Attribute and Button elements for Identity provisioning policy are discussed in Attributes and But-
tons.

Form
The Form element should contain a single attribute to define the form: a name.

<Form name="My Custom Form">

If the form is stored in the database as an independent Form object, the name must be unique; no two Form objects
can share the same name. This restriction does not apply to Forms defined inline within a workflow approval step.
While a name is required for independent Form objects, it is recommended but is not required on inline forms.

Attributes
Forms can include a map of attributes that are used by the renderer. These are applicable only to workflow forms and,
in a limited way, to the identity provisioning policy form.

Attributes are specified with the following keys:

Components of a Form Definition

SailPoint Forms 8

Key Description

pageTitle
Title to render at top of page, typically larger and a different color than
the form title; also displayed in browser window header bar in some
cases

title FormTitle, shown at top of form body

subtitle Form subtitle, shown below title

readOnly
<entry key="readOnly= "" value="true""/>makes form
read-only so the fields are rendered as uneditable text or as disabled
HTML components

hideIncompleteFields

hideIncompleteFields="true" hides any fields that do not
have all of their dependencies met.
Usually only set programmatically to control field presentation in pro-
visioning policy forms, though can be specified in a workflow form XML.

This does not create dynamically displayed fields on forms. Fields are
not displayed on a form after their dependency values on the same
form are entered. Use the new hidden attribute on Fields and Sections
to achieve this dynamic display functionality.

Note: The Boolean attributes are only specified if they are true; they default to false when omit-
ted.

Attributes maps are specified as shown here:

 <Attributes>
 <Map>
 <entry key="pageTitle" value="Review Non-Employee Request"/>
 <entry key="readOnly" value="true"/>
 </Map>
</Attributes>

Attributes do not apply to report forms because the sections in a report form are pulled out of the report's form defin-
ition and combined into the Report Form Skeleton for display in the user interface. Even if they are specified in the
report form, these attributes are never applied to the resultant form that is displayed to the user.

On an identity provisioning policy form, the pageTitle attribute is ignored because the main page title is pro-
grammatically set based on the other action being performed (Create New Identity, Edit Identity Attributes for [User-
name], or New User Registration). The title and subtitle attributes are displayed in the user interface when specified in
the form's attributes map. The readOnly and hideIncompleteFields function on this form type should not be used
because they do not provide useful functionality for this type of form.

Components of a Form Definition

SailPoint Forms 9

Buttons
Buttons enable the user to indicate which action to take next and how to process the data on the form. Buttons only
apply to workflow forms. Buttons can be specified on identity provisioning policy forms, but the window does not sup-
port any action on them other than next (submit). Since Submit and Cancel buttons already exist on the window and
perform the appropriate functions for the window, additional buttons are unnecessary. They cannot be specified in a
role or application provisioning policy form, and they are not used by the report executor when it combines the specific
report's form with the Report Form Skeleton.

Buttons require two attributes, a label and an action. The label determines the text displayed on the button. The action
determines what the system does in response to clicking that button. There are four available actions:

l next – save (and validate fields with validation scripts where specified) any entered form data and set the work
item status to approved. This can then be used in the Transition logic to advance the workflow to the next step
(OK/Save/Approve/Submit functionality).

l back – save entered form data (no validation is performed) and set the work item status to rejected. This can
then be used in the Transition logic to return to a previous step or any other appropriate action for a rejection.
Saved value is redisplayed on this form if the workflow logic process back through this step again.

l cancel – close the form, suspend the workflow and return to previous page in user interface. This leaves the
work item active, awaiting a different action choice by the user.

l refresh – save the entered form data and regenerate the form. Not a state transition, just a redisplay of the
form (rarely used).

These are examples of button elements.

<Button label='Submit' action='next'/>
<Button label="Cancel" action="cancel"/>

Sections
Sections divide a form into logical groupings that are visually marked on the window with boxes around the fields in
each section. They can be specified in the XML for all policies except application and role provisioning policies. By
default, a separate section is created on the provisioning form for each application (each application's provisioning
policy form is rendered in its own section). However, fields in a provisioning policy form can be specified with a section
attribute that causes them to be displayed in different sections from the defaults. Sections are treated differently on
report forms, each section becomes a separate page on the Edit Report window rather than just a separate section on
a contiguous form.

Components of a Form Definition

SailPoint Forms 10

Sections are specified in the form object's XML with a <Section> tag and can be modified by the attributes shown in
the table below.

Section
Attributes

Description

name Internal name for section (might be referenced by field objects in some forms).

label

If non-null, the label is displayed above the section fields in a box on the section bor-
der.
For report forms, the label is specified in the Edit Report window's sections list.
Labels can be specified with text, message catalog keys, or variables (specified
with $(varName) notation).

type

Rendering type (optional).
When no type is specified, fields in the section are editable fields, displayed one
field per row, unless the columns attribute specifies otherwise.
Other type options are:
datatable – makes fields in the section non-editable; generally used to display a
read-only informational table to give the form user a context for the form's reques-
ted data.
text – indicates the section is a block of informational text; if multiple fields are
included in a text section, each field is rendered on a separate line with line breaks
between them.

columns

Number of columns contained in the form section; fields are placed in columns left
to right, one field per column before moving to the next row.

For example, in a 2 column layout (columns="2"), 4 fields are displayed:
Field 1 Field 2
Field 3 Field 4

These are examples of Section elements in the XML for forms.

<Section name="authorizations" label="Authorizations" type="datatable">
<Section columns="2" label="rept_app_section_label" name="customProperties">

Sections contain nested field elements and might contain nested sections when sub-groupings are needed.

Components of a Form Definition

SailPoint Forms 11

Fields
Fields are the core element of forms. They are the mechanism by which data gets communicated to and from the user.
Fields offer options that affect the appearance or functionality of the field. Some of these are commonly used and oth-
ers are used very infrequently. Some of these are specified as inline attributes in the <Field> tag and others are spe-
cified as nested elements within the Field.

Field attributes appropriate to all

Field Attrib-
utes

Description

name

Name for the field that can be referenced in code as the variable name in which
the field's value is stored.

Avoid using the following field names:

accept
accept-charset
action
autocomplete
enctype
method
name
novalidate
target

As well as global attributes:

accesskey
class
contenteditable
contextmenu,data-*
dir
draggable
dropzone
hidden
id
itemid
itemprop
itemref

Components of a Form Definition

SailPoint Forms 12

Field Attrib-
utes

Description

itemscpe
itemtype
lang
spellcheck
style
tabindex
title

displayName Label for the field; can be text or a message key.

helpKey

Tool tip help text; can be text or a localizable message key.

Example:

<Field name="firstName" displayName="First Name" helpKey-

y="Enter the person's first name" />

type

Field datatype; influences the display widget used to display the field on a form.

Valid values are:
string, int, long, boolean, date, and SailPoint object types (Identity, Bundle, Per-
mission, Rule, Application), default is string.

SailPoint objects are displayed as dropdown lists or combo boxes if multi="true"
is also specified.

Specifying type="boolean" renders the field as a checkbox; specifying type-
e="date" adds a calendar from which the date can be selected.

To preselect an object in the list, specify the name of the object (not an actual
object) as the "value" attribute.

Example:

<Field name="role" displayName="Role" type="Bundle" value-

e="TRAKK Basic" />

multi
Boolean indicating whether the field is multi-selectable.

Components of a Form Definition

SailPoint Forms 13

Field Attrib-
utes

Description

This attribute is only appropriate to drop-down lists, which are then displayed as
combo boxes. Used this with SailPoint object field types or with a nested
AllowedValues / AllowedValuesDefinition element that populates a selection list
for the field.

Example:

<Field name="apps" displayName="Applications" type-

e="Application" multi="true"/>

readOnly

Boolean indicating that the field cannot be edited on the form. The value is dis-
played as text, not in an editable box.
Not necessary to specify on fields in a datatable section, since they are already
read-only.

hidden

Boolean that, when true, prevents the field from being displayed on the form.

This attribute is used in reporting to make fields available for inclusion on the
report detail grid but not actually include them by default.

This can be used in any form, but might not be commonly implemented:

l In role / application provisioning policies, fields are only shown if the user
needs to enter data, so forcing fields to be hidden is not helpful.

l In workflows, the hideIncompleteFields attribute on the Form object is
more likely to be used with the dependencies attribute on Field to defer
field display until dependencies are fulfilled.

l In Identity provisioning policy, fields that should be hidden can be omitted
from the form instead, however, this could be used for fields that always
contain the same value for all users to set that value and suppress the
field from the data entry form. For example, <Field name="status"

hidden="true" value="NewHire" /

Attributes marked hidden are not included in the plan. You must manually add
the includeHiddenFields property to the form to include the hidden fields in the
plan.

Components of a Form Definition

SailPoint Forms 14

Field Attrib-
utes

Description

<entry key="includeHiddenFields" value="true"/>

required

Boolean indicating whether a value is mandatory for the field; required="true"
marks the field with * on the form to indicate that a value is required, and pre-
vents form submission without a value for the field.

Example:<Field name="myfield" displayName="My Field"

required="true"/>

postBack

Boolean that, when true, causes the form to refresh when the field's data value
changes, running any rules or scripts that run on form load.

<Field name="application" displayName="Application" type-

e="Application" postBack="true"/>

Supports conditional display / editing of sections or fields based on other field
attributes values, automatic population of fields based on other fields, and val-
idation of fields based on actions taken on the form. It only runs when a field
loses focus, so it can be used on selection fields or text entry fields.

columnSpan

Used when the section is configured with multiple columns; specifies the number
of columns the field should span.

<Section columns="2" label="Identity Info" name-

e="identInfo">

<Field name="fname" displayName="First Name" colum-

nSpan="2"/>

filterString

Used for fields where type is a SailPointObject class to specify a filter to
restrict the set of selectable objects presented in the drop-down list.

filterString is specified according to the filter string syntax and should be spe-
cified in single quotes, so that double quotes can be used within the string.

Example:
<Field displayName="Role" name="role" type="Bundle" fil-

terString='name.startsWith("TRAKK")' />

section
Statically defined fields in a form's XML are defined within a section element, so
any section attribute specified on those fields is ignored. However, the section

Components of a Form Definition

SailPoint Forms 15

Field Attrib-
utes

Description

attribute can be used to organize fields in an application or role provisioning
policy or on a dynamically rendered form.

Application and role provisioning policy forms do not have section elements, so
the section attribute can be used to force fields to be grouped differently than the
default (default is by application or by role).

Example:

These two fields are put on the form in separate sections, labeled "Important
Items" and "Optional Items" respectively.

<Field name="myField" displayName="My Field" sec-

tion="Important Items"/>

<Field name="optField" displayName="Optional Field" sec-

tion="Optional Items"/>

The section attribute on fields is also used in dynamically created forms (such as
in Reports where fields are added to the form programmatically through an ini-
tialization script). This attribute enables the code to specify the section of the
form into which the field should be added.

displayType

Forces string fields to display as specified, used only for string fields.

Valid displayTypes are: radio, combobox, textarea, and label

displayType="radio" and "combobox" are used to override the default display
format for permitted-values fields (radio is the default for 2 options while >2
options is rendered as comboBox by default). textarea is used to make a string
field display as a text area instead of a regular entry field.

For label, you can use the field displayName for the text / message key of the
label.

<Field name="dept" displayName="Department"
displayType="radio"<AllowedValues>

<String>Accounting</String>

<String>Manufacturing</String>

<String>Engineering</String>

</AllowedValues>

Components of a Form Definition

SailPoint Forms 16

Field Attrib-
utes

Description

</Field>

<Field name="comments" displayName="Comments"
displayType="textarea" />

value

Sets the default / initial value for the field. This can be overwritten on the form in
most cases, as long as the field is not marked readOnly. This is used within sec-
tions of type="text" to specify the text to display

For application or role provisioning policies, setting a value (whether with this
attribute or through a nested <Value>, <RuleRef>, or <Script> element) prevents
the field from being included on the form unless reviewRequired is specified
since provisioning policies only collect values from a user that they cannot
determine or calculate independently.

In workflow approvals, value can be specified by string, rule, script, call, or ref-
erence (string is default).

In reports forms, the value is a reference to the report taskDefinition's input para-
meter from which to retrieve the starting / default value for the field, for example,
value="ref:applications".

Example:

<Field name="role" displayName="Role" type="Bundle" value-

e="TRAKK Basic"/>

dynamic

This attribute performs two separate functions:

(1) For fields with an AllowedValuesDefinition, delays running of allowed values
scripts / rules until the field is clicked, instead of running at form load, so it can
make use of other data entered on the form instead of just data available on ini-
tial form load.

(2) During form refresh in response to a value change of a field marked for
postBack, only fields marked as dynamic (dynamic="true") have their value
scripts / rules re-run; otherwise, the initial value calculated for the field on form
load remains in effect as the field's default value.

Example:

<Field name="fullName" displayName="Full Name"
dynamic="true">

Components of a Form Definition

SailPoint Forms 17

Field Attrib-
utes

Description

<Script>

<Source>

return (firstName + " " + lastName);

</Source>

</Script>

</Field>

Note: Field value recalculations for fields marked as
dynamic are not processed on postBack if a value has been
entered manually in the field, based on the assumption that
if a user manually enters a value, they generally do not
want that overridden by an automatic process. To override
this behavior, manually clear the fields using a hidden script
elsewhere in the form like this:

<Section>

<Attributes> <Map>

<entry key="hidden">

<value> <Script> <Source>

boolean hidden = false;

// Null out field – add condition here if desired

form.getField("nickname").setValue(null);

return hidden;

</Source> </Script> </value>

</entry>

</Map> </Attributes>

<Field displayName="Nickname" dynamic="true"
name="nickname" type="string">

<Script><Source>

if ("Robert".equal(firstName))

return "Bob";

</Source></Script>

</Field>

</Section>

Attributes that only apply to the application and role provisioning policies

Components of a Form Definition

SailPoint Forms 18

Field Attributes Description

dependencies

List (CSV) of other fields that must be evaluated before this field.

Dependencies on the provisioning policy (form) field cause that field to be
deferred to a subsequent form that is presented after the form on which its
dependencies are presented. The field might also be calculated based on
those dependencies instead of presenting it on a later form.

This attribute can also be used with dynamic / allowedValues fields. Values
of dependencies fields are made available to the allowedValues script or
rule, even if the field is presented on a different form.

reviewRequired

Enables a default value to be assigned to the field while still including the
field on the form displayed to a user. This enables the default to be edited. If
reviewRequired="true" is not specified, the provisioning policy form fields
with a default value (or value script / rule that returns a value) are omitted
from the user-facing form and the default value is automatically used.

authoritative

Boolean that specifies whether the field value should replace the current
value rather than be merged with it. Valid for multi-valued attributes only:

<Field name="costCenter" displayName="Cost Center" mul-

ti="true" authoritative="true"/>

Fields can also contain nested elements that help control the display or use of the field

Nested Elements within
Field Elements

Description

Description

Field description, used for XML self-documentation. Not displayed in
user interface.

<Description>

This field stores the Identity's first name.

</Description>

Attributes

Attribute map used to control field rendering, specific to the field type.
The most common attributes are height and width which are usually spe-
cified for textarea fields and for entry boxes that need to be other than
the default rendering size. Units for height and width are in pixels.

Components of a Form Definition

SailPoint Forms 19

Nested Elements within
Field Elements

Description

<Attributes>

<Map>

<entry key="height" value="200"/>

<entry key="width" value="100"/>

</Map>

</Attributes>

Value

Alternative to "value" attribute on <Field>. This is required when spe-
cifying complex datatypes such as Map or List.

<Value>

<List>

<String>Thing 1</String>

<String>Thing 2</String>

</List>

</Value>

Also needed for fields of type Date, which are specified as the utime rep-
resentation of the date:

<Value>

<Date>1231971297</Date>

</Value>

Can be used to specify simpler types like String, Boolean, etc. but not
commonly done because value attribute is simpler.

Script

Script used to initialize the value of the field, alternative to the value ele-
ment / attribute. Automatically created for fields whose value is set by
script through user interface specification.

Example:

<Script>

<Source>

Components of a Form Definition

SailPoint Forms 20

Nested Elements within
Field Elements

Description

[BeanShell code goes here]

return [value or variable that contains value to

assign to the field];

</Source>

</Script>

RuleRef

Reference to a reusable rule for initializing field value. Alternative to
<Script> (and value attribute). Automatically created for fields whose
value is set by script through user interface specification.

<RuleRef>

<Reference class="Rule" name="My Rule"

id="402839343985ff930d" />

</RuleRef>

AllowedValues

Specifies a set of values from which the user can select to assign the
field value. Automatically created for fields with an allowed values prop-
erty set to Value (with a list of values specified) through user interface
specification.

<Field name="dept" …>

<AllowedValues>

<String>Accounting</String>

<String>Manufacturing</String>

<String>Engineering</String>

</AllowedValues>

</Field>

The list renders as radio buttons when only two options exist (and multi
is not allowed), as a listbox for more than two options, and as a com-
bobox for multi-selectable fields.

AllowedValuesDefinition

Populates a list of values from which the user can select a value for the
field. This field contains either a <Script> block that specifies the list pro-
grammatically or a <RuleRef> that points to a rule containing the bean-
shell for generating the list. Automatically created for fields with an
allowed values property set to Script or Rule through user interface spe-

Components of a Form Definition

SailPoint Forms 21

Nested Elements within
Field Elements

Description

cification.

<AllowedValuesDefinition>

<Script>

<Source>

import sailpoint.object.*;

List l = new ArrayList();

for(WorkItem.State enumItem : WorkItem.State.values

()) {

List l2 = new ArrayList();

l2.add(enumItem.toString());

l2.add(enumItem.getMessageKey());

l.add(l2);

}

return l;

</Source>

</Script>

</AllowedValuesDefinition>

Alternative to AllowedValues element and more commonly used. The
list renders as radio buttons when only two options exist (and multi is
not allowed), as a listbox for more than two options, and as a combo box
for multi-selectable fields.

ValidationScript

Script used to examine and validate the field value entered by the user.
The value entered is passed to the validation script in the variable
named "value."

<ValidationScript>

<Source>

if (value > 10) {

return "Value must be less than or equal to 10";

else

return null;

</Source>

</ValidationScript>

Components of a Form Definition

SailPoint Forms 22

Nested Elements within
Field Elements

Description

Returns null if no errors and an error message (as string or
SailPoint.tools.message object) if validation errors exist.

ValidationRule

Reference to reusable rule for field validation. This is the alternative to
ValidationScript.

<ValidationRule>

<Reference class="Rule" name="My Validation Rule"

id="4028392342f5ff9301" />

</ValidationRule>

OwnerDefinition

Used only for application and role provisioning policies to determine the
Identity to whom the fields should be presented. This enables spe-
cification of a RuleRef, script, a Value element or a Value attribute:

<OwnerDefinition>

<RuleRef>

<Reference class="rule" name="My Owner Rule"

id="4038293483598523" />

</RuleRef>

</OwnerDefinition>

or

<OwnerDefinition>

<Script>

<Source>

import sailpoint.object.*;

Identity myIdentity=context.getObjectByName(Iden-

tity,"Walter.Henderson");

return myIdentity;

</Source>

</Script>

</OwnerDefinition>

or

<OwnerDefinition value="IIQApplicationOwner"/>

Can provide either the string name of owning Identity or the Identity

Components of a Form Definition

SailPoint Forms 23

Nested Elements within
Field Elements

Description

object.

As with Field value, OwnerDefinition value can also be expressed as a
nested element. It can be a string Identity name or an Identity object:

<OwnerDefinition>

<Value>

<String>Walter.Henderson</String>

</Value>

</OwnerDefinition>

Three special names exist that are translated by IdentityIQ into the
appropriate Identity so an OwnerDefinition script is not required for
them:

l IIQParentOwner – owner of the role or application containing the
provisioning policy form

l IIQApplicationOwner – owner of the application associated with
the provisioning policy form

l IIQRoleOwner – owner of the role containing the provisioning
policy form

<OwnerDefinition value=""/> assigns and presents the field to
the access requester.

The user interface offers these options for setting field owners:
Requester (sets OwnerDefinition to ""), Application Owner (sets to
"IIQApplicationOwner"), Role Owner on Role Provisioning Policies
(sets to "IIQRoleOwner"), and Rule and Script (save as Own-
erDefinition with nested RuleRef or Script, as shown above).

AppDependency

Applies only to application provisioning policies as part of the ordered
provisioning function; sets the value for a field based on the value of an
attribute on another application on which it is dependent.

<Field displayName="Login ID" name="login" type-

e="string">

Components of a Form Definition

SailPoint Forms 24

Nested Elements within
Field Elements

Description

<AppDependency applicationName="LDAP" schem-

aAttributeName="employeeNumber"/>

</Field>

This can only be specified when the application has dependencies
declared and can only reference attributes on an application on which
the application is dependent. The user interface option for field value
named Dependency creates this element in the field definition.

Working with the Form Editor

SailPoint Forms 25

Working with the Form Editor

The Form Editor provides a graphical user interface enabling you to create and edit forms without having to edit the
xml directly.

The Form Editor contains the following sections:

l Detail View – detailed information about the selected form

l Expandable Tree View – provides an ordered, hierarchical view of the form components

l Edit Options – the available attributes for the selected form item

Detail View
This section displays the detail information about the selected form on clicking the Details button. The following table
lists displayed attributes for the respective Form Type:

Form Type Attributes

Application Provisioning Policy Form Title, Subtitle, Wizard, Owner

Role Provisioning Policy Form Title, Subtitle, Wizard, Application, Owner

Workflow Form Title, Subtitle, Wizard

Expandable Tree
The expandable tree section provides an ordered and hierarchical view of the form components.

The tree section can be subdivided into the following components:

Action buttons

Buttons for following actions:

l Add Section – adds section to the expandable tree view

l Add Button – adds button to the bottom of the expandable tree view. The Add Button is applicable to Work-
flow Approval Forms.

l Preview Form – displays the form layout for all included form components in the editor. Helps to preview
the form while developing a form to see how it renders on actual operations.

Working with the Form Editor

SailPoint Forms 26

Components in the tree view

These are the different components of the tree panel:

l Section – Multiple sections can be added to the tree panel through the Add Section button. Using + icon
Fields and Row with Columns can be added. The Section item can be expanded or collapsed by clicking on
them.

l Add Field – Fields can be added under the Section.

l Add Row with Columns – Rows with a maximum of four columns can be added under the Section
using the Choose how many columns in this row dropdown list under the Edit Options section.

Note: When using Rows, the columns attribute of Section and columnSpan attrib-
ute of Field would be calculated by Form Editor and existing values would be over-
written.

l Button – All the defined Buttons are added at the end in the tree panel.

Reordering Form Components

Form components can be reordered using the drag / drop feature in the following way:

l Sections – sections can be reordered. Sections cannot have sections within them.

l Rows – rows can be reordered within the Section or dragged and dropped into any Section.

l Fields – fields can be reordered within Rows or dragged and dropped into any Section.

l Buttons – can be reordered only within Buttons.

Note: For inappropriate moves of the form components the not allowed icon is displayed.

Edit Options
The Edit Options section on the Editor page displays the attributes that must be modified for the respective actions.

Click on the Apply button after the attributes are modified.

Section

Working with the Form Editor

SailPoint Forms 27

Attributes Description

Basic

Name Internal name for section.

Label

Label of Section determines Section text on Edit page.

Labels can be specified as text, message catalog keys, or variables (specified with
$(variableName) notation).

Subtitle
Section subtitle as description (displayed at the top of the section, above all fields in the
section).

Settings

Hidden Boolean that, when true, prevents the field from being displayed on the form.

Read Only Section properties are read only.

Hide Nulls When set to true, hides fields within the section which have a null value.

Fields and Rows

Attributes Description

Settings

Name
Name for the field that can be referenced in code as the variable name in which the
fields value is stored

Display Name Label for the field; can be text or a message key.

Help Text The text that appears when hovering the mouse over the help icon.

Type

Select the type of field from the drop down list. Select from the following:
Boolean – true or false values field.

Date – calendar date field.

Integer – only numerical values field.

Long – similar to integer but is used for large numerical values.

Identity – specific identity in IdentityIQ field.

Secret – hidden text field.

String – text field

Application – list of existing application

Role – existing type of bundles

Type Settings

Multi-Valued Enable this to have more than one selectable value in this field of the generated

Working with the Form Editor

SailPoint Forms 28

Attributes Description

form.

Refresh On
Change

Boolean that, when true, causes the form to refresh when the fields data value
changes, running any rules or scripts that run on form reload.

Authoritative
Enable to have the field value override the current value rather than merge with it.
Applicable only for multivalued attributes.

Required
Boolean indicating whether a value is mandatory for the field; required="true" marks
field with * on form to indicate required and prevents form submission without a
value for the field.

Read Only

Determine how the read only value is derived:

True – value based on the selection from the drop down list

Rule – value is based on a specified rule

Script – value is determined by the execution of a script

Hidden

Boolean that, when true, prevents the field from being displayed on the form.

True – value based on the selection from the drop down list

Rule – value is based on a specified rule

Script – value is determined by the execution of a script

owner

The owner of the field / row. This is determined by selecting from the following:

None – no owner is assigned to this field/row

Requester – sets the Owner to this field/row

Rule – use a rule to determine the owner of this field/row

Script – use a script to determine the owner of this field/row

Value Settings

Value
Sets the default / initial value for the field / row. This can be overwritten on the form if
the field / row is not marked as Read Only. Select None, Value, Rule or Script
option.

Allowed Val-
ues

Specifies a set of values from which the user can select to assign the field value.
Automatically created for fields with an allowed values property set to Value (with a
list of values specified) through user interface specification. Select Value, Rule, or
Script.

Validation
Ability to specify a script or rule for validating the user's value by selecting None,
Rule or Script.

Button

Working with the Form Editor

SailPoint Forms 29

Attributes Description

Settings

Action

Action determines what the system does in response to clicking the associated button.
Select one from the drop down list:

Next – used in the Transition logic to advance the workflow to the next step

Back – used in the Transition logic to return to a previous step or any other appropriate
action for a rejection.

Refresh – save the entered form data and regenerate the form; not a state transition
just a redisplay of the form

Read Only Determines whether to show a button or not on the form renderer.

Skip Val-
idation

Determines if client-side required item validation is necessary based on the button
clicked by the user. Validation is required if the button is not configured to skip val-
idation, the action is NEXT and there are required items.

Label Determines the text displayed on the button.

Parameter Action-parameter of the button.

Value Action-parameter value.

Form Examples

SailPoint Forms 30

Form Examples

This section contains examples of XML specifications for the various types of forms.

Application and Role Provisioning Policies andWorkflow Forms can all be created through the user interface, though
some advanced features might require XML editing to implement. All form types are recorded as XML objects that can
be edited through the debug pages as needed. This section reviews the form types in their XML format and shows
how they are rendered as a form in the user interface based on that XML definition.

Application and Role Provisioning Policy
Application provisioning policies are specified as <Form> within the <Application> definition. Role provisioning
polices are <Form> within the <Bundle> definition. Applications might have more than one provisioning policy form
– one for (account) creation, update, and delete provisioning activities plus additional policies for group creation and
update. Roles might only have one for role assignment to an Identity.

This sample <Form> definition provides examples of fields slotted into separate sections, assigned to different own-
ers by value or by script, with an permitted values set, and with a validation script. Application provisioning policies are
specified within a <Forms> element that wraps all of the specified provisioning policy forms together.

<?xml version='1.0' encoding='UTF-8'?><!DOCTYPE Form PUBLIC "spt.dtd" "spt.dtd">
<Form name="New Acct Policy" type="Create">
 <Field displayName="Name" name="name" required="true" reviewRequired="true" type-
e="string">
 <OwnerDefinition value="IIQApplicationOwner"/>
 </Field>
 <Field displayName="Phone" name="phone" required="true" section="Extra Info" type-
e="string">
 <OwnerDefinition value="IIQApplicationOwner"/>
 </Field>
 <Field displayName="Office Number" name="off_no" required="true" section="" type-
e="integer">
 <OwnerDefinition>
 <Script>
 <Source>return identity.getManager();</Source>
 </Script>
 </OwnerDefinition>
 <ValidationScript>
 <Source>
 try {
int number=Integer.parseInt(value);
if (number < 100) {
return "Office numbers are all 100 or greater.";
} else{
return null;
}
} catch (NumberFormatException e) {

Form Examples

SailPoint Forms 31

return "Non-numeric value provided; must be numeric.";
}
</Source>
 </ValidationScript>
 </Field>
 <Field displayName="Region" name="region" required="true" type="string">
 <AllowedValues>
 <String>Americas</String>
 <String>EMEA</String>
 <String>APAC</String>
 </AllowedValues>
 </Field>

Application Provisioning Policies can render on multiple forms, depending on the field Owners. Multiple provisioning
policy forms can be combined into one form if a request spans multiple applications or roles that each need to gather
additional data from the same user.

Identity Provisioning Policy
The XML below creates an identity provisioning policy which implements many of the available form options, includ-
ing:

The form includes multiple field types (: string, object, and secret -. Secret hides enteredthe text). as it is entered.
Object fields are rendered as dropdown list boxes prepopulated with all available items of that type.

l Multi-column configurations

l Multi-column spans for some fields

l Allowed values lists

l Tool tip help prompts

l Field validation (runs when user clicks Submit)

l Filter on object lists for example, show only Manager Identities in Manager drop down list

l Conditional display of sections based on entered field values

l Population of fields based on values entered in other fields

The form includes multiple field types: string, object and secret. Secret hides the text as it is entered. Object fields are
rendered as dropdown list boxes prepopulated with all available items of that type.

Form Examples

SailPoint Forms 32

 <?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE Form PUBLIC "sailpoint.dtd" "sailpoint.dtd">
<Form name="Identity Create Policy" type="CreateIdentity">
 <Description>This is the provisioning policy used when creating a new identity thru
LCM.</Description>
 <Section columns="2">
 <Field displayName="First Name" name="firstname" required="true" reviewRe-
quired="true" type="string"/>
 <Field displayName="Last Name" name="lastname" postBack="true" required="true" type-
e="string"/>
 <Field columnSpan="2" displayName="Username" dynamic="true" helpKey="cube name" name-
e="name" required="true" type="string">
 <Script>
 <Source>
 if ((null != firstname) && (null != lastname)) {
 return (firstname + "." + lastname);
 }
 return null;
 </Source>
 </Script>
 <ValidationScript>
 <Source>
 // validation variable comes in as "value"; messages value returned
 // is displayed on screen below field on validation; success should return
 // empty messages list
 import sailpoint.tools.Message;
 import sailpoint.object.Identity;

 List messages = new ArrayList();

 Identity existing = (Identity)context.getObjectByName(Identity.class,value);
 if (existing == null) {
 // No Identity found with that name, so return empty messages -
 // validation successful
 return messages;
 } else {
 Message msg = new Message();
 msg.setKey("Username: " + value + " already exists. Modify this name to
make it unique.");
 messages.add(msg);
 return messages;
 }
 </Source>
 </ValidationScript>
 </Field>
 <Field displayName="Password" name="password" reviewRequired="true" type="secret"/>
 <Field displayName="Password Confirmation" name="passwordConfirm" reviewRe-
quired="true" type="secret"/>
 <Field displayName="Employment Type" displayType="combobox" name="status" postBack-
k="true" type="string">
 <AllowedValues>
 <String>Employee</String>
 <String>Contractor</String>
 </AllowedValues>
 </Field>

Form Examples

SailPoint Forms 33

 </Section>
 <Section label="Employee Only Fields">
 <Attributes>
 <Map>
 <entry key="hidden">
 <value>
 <Script>
 <Source>
 if ("Employee".equals(status)) {
 return false;
 } else {
 return true;
 }
 </Source>
 </Script>
 </value>
 </entry>
 </Map>
 </Attributes>
 <Field displayName="Manager" filterString="managerStatus == true" name="manager" type-
e="sailpoint.object.Identity"/>
 <Field displayName="att_email" dynamic="true" name="email" reviewRequired="true" sec-
tion="" type="string">
 <Script>
 <Source>
 if (("Employee".equals(status)) && (null != firstname) &&
(null != lastname)) {
 return (firstname + "." + lastname + "@demoexample.com");
 }
 return null;
 </Source>
 </Script>
 </Field>
 <Field displayName="Location" name="location" reviewRequired="true" type="string"
value="Austin">
 <AllowedValues>
 <String>Austin</String>
 <String>Brazil</String>
 <String>Munich</String>
 <String>London</String>
 <String>Brussels</String>
 <String>San Jose</String>
 <String>Chicago</String>
 <String>Taipei</String>
 <String>Tokyo</String>
 </AllowedValues>
 </Field>
 </Section>
</Form>

Form Examples

SailPoint Forms 34

Workflow Form
This example XML creates a custom form that displays the Identity's name and asks the user to select a region to
which the Identity should be assigned. It demonstrates use of an AllowedValuesDefinition and a ValidationScript as
well as Sections of all three types, text, datatable, and default. This form is embedded in the Workflow XML, as it
would be if the form were created through the Business Process Editor Add Form option. The form could alternatively
be created as a standalone form object and referenced as an argument to the approval, as described in Workflow
Forms.

<Step name="Need Region" posX="359" posY="182">
 <Approval name="Need Region" owner="ref:launcher" return="region"
 send="identityName">
 <Arg name="workItemDescription"
 value="string:Fill in Region for $(identityName)"/>
 <Form>
 <Attributes>
 <Map>
 <entry key="pageTitle" value="Get Region"/>
 <entry key="title" value="Need Region for Identity"/>
 </Map>
 </Attributes>
 <Button action="back" label="Abort"/>
 <Button action="next" label="Submit"/>
 <Button action="cancel" label="Return Item to Inbox"/>

 <Section name='userInstructions' type='text'>
 <Field value="Employees must be assigned to a region. Please provide the correct
region for this employee."
/>
 </Section>

 <Section type="datatable">
 <Field displayName="Employee Name" name="identityName"/>
 </Section>

 <Section name="Edit These Fields">
 <Field displayName="Region Value" name="region" required="true"
 type="String">
 <AllowedValuesDefinition>
 <Script>
 <Source>
 import java.util.ArrayList;
 import sailpoint.api.*;
 import sailpoint.object.*;

 List regions = new ArrayList();
 QueryOptions qo = new QueryOptions();

 qo.setDistinct(true);
 qo.addOrdering("region", true);

Form Examples

SailPoint Forms 35

 List props = new ArrayList();
 props.add("region");

 Iterator result = context.search(Identity.class, qo, props);
 while (result.hasNext()) {
 Object [] record = result.next();
 String region= (String) record[0];
 regions.add(region);
 }
 return regions;
 </Source>
 </Script>
 </AllowedValuesDefinition>
 <ValidationScript>
 <Source>
 // validation variable comes in as "value"
 import sailpoint.tools.Message;
 List messages = new ArrayList();
 if(value.length() < 6) {
 Message msg = new Message();
 msg.setKey("New region must be at least 6 characters.");
 messages.add(msg);
 }
 return messages;

 </Source>
 </ValidationScript>
 </Field>
 </Section>
 </Form>
 </Approval>
</Step>

Report Forms
Report forms are used to display report-specific filters to the user in the Edit Report window. The form must be created
as an independent Form object and referenced from the report definition in a <ReportForm> element.

At runtime, the form is combined with the Report Form Skeleton, which defines the Standard Properties and Report
Layout pages. Each section named in the form is created as its own Report Properties page, displayed between the
Standard Properties and Report Layout pages. The page name, shown in the Sections list and at the top of the form,
is specified as the Section's label attribute.

 <Form name="Uncorrelated Accounts Report Custom Fields">
 <Section label="Uncorrelated Accounts Parameters" name="customProperties">
<Field displayName="report_input_correlated_apps" filterString="logical==false &&
authoritative==false" helpKey="rept_input_uncorrelated_ident_report_correlated_apps"
name="correlatedApps" type="Application" value="ref:correlatedApps"/>
 </Section>
 </Form>

Form Examples

SailPoint Forms 36

An example of a simple report form is shown below. It contains only one section, formatted in two columns with sev-
eral datatypes represented (dates, objects, and Boolean). The displayName and helpKey values on this report are loc-
alizable message keys. The values are all pulled from the TaskDefinition's input arguments, if any are provided there,
to set the fields' default values.

<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE Form PUBLIC "sailpoint.dtd" "sailpoint.dtd">
<Form created="1346776069392" id="4028460239921ba40139921bf510019a" mod-
ified="1346776080142"
name="Application Owner Access Review Report Form">
 <Section columns="2" label="rept_cert_custom_section_title" name="customProperties">
 <Field displayName="rept_cert_field_create_start" helpKey="rept_cert_help_create_
start"
name="createStartDate" type="date" value="ref:createStartDate"/>
 <Field displayName="rept_cert_field_create_end" helpKey="rept_cert_help_create_end"
name="createEndDate" type="date" value="ref:createEndDate"/>
 <Field displayName="rept_cert_field_signed_start" helpKey="rept_cert_help_signed_
start"
name="signedStartDate" type="date" value="ref:signedStartDate"/>
 <Field displayName="rept_cert_field_signed_end" helpKey="rept_cert_help_signed_end"
name="signedEndDate" type="date" value="ref:signedEndDate"/>
 <Field displayName="rept_cert_field_due_start" helpKey="rept_cert_help_due_start"
name="dueStartDate"
type="date" value="ref:dueStartDate"/>
 <Field displayName="rept_cert_field_due_end" helpKey="rept_cert_help_due_end" name-
e="dueEndDate"
type="date" value="ref:dueEndDate"/>
 <Field displayName="rept_cert_field_apps" helpKey="rept_cert_help_apps" multi="true"
name="applications" type="Application" value="ref:applications"/>
 <Field displayName="rept_cert_field_tags" helpKey="rept_cert_help_tags" multi="true"
name="tags"
type="Tag" value="ref:tags"/>
 <Field displayName="rept_cert_field_cert_group" helpKey="rept_cert_help_cert_group"
multi="true"
name="certificationGroups" type="CertificationGroup" value="ref:certificationGroups"/>
 <Field displayName="rept_cert_field_show_exclusions" helpKey="rept_cert_help_show_
exclusions"
name="exclusions" type="boolean" value="ref:exclusions"/>
 </Section>
</Form>

This form is rendered as shown in the Report Properties section of the Edit Report window.

In report forms, sections can be created without Field definitions, allowing the report's taskDefinition's initialization
rule/script to create the form fields. Several of the standard reports, for example, use an initialization rule to generate a
pages of Application and/or Identity attribute filters based on the installation's system data, the defined standard and
extended attributes, so the report forms themselves are defined with empty sections. The Privileged Access Report
form provides an example of a dynamically built form.

<?xml version='1.0' encoding='UTF-8'?>

Form Examples

SailPoint Forms 37

<!DOCTYPE Form PUBLIC "sailpoint.dtd" "sailpoint.dtd">
<Form created="1346776069392" id="4028460239921ba40139921bf510019a" mod-
ified="1346776080142"
name="Application Owner Access Review Report Form">
 <Section columns="2" label="rept_cert_custom_section_title" name="customProperties">
 <Field displayName="rept_cert_field_create_start" helpKey="rept_cert_help_create_
start"
name="createStartDate" type="date" value="ref:createStartDate"/>
 <Field displayName="rept_cert_field_create_end" helpKey="rept_cert_help_create_end"
name="createEndDate" type="date" value="ref:createEndDate"/>
 <Field displayName="rept_cert_field_signed_start" helpKey="rept_cert_help_signed_
start"
name="signedStartDate" type="date" value="ref:signedStartDate"/>
 <Field displayName="rept_cert_field_signed_end" helpKey="rept_cert_help_signed_end"
name="signedEndDate" type="date" value="ref:signedEndDate"/>
 <Field displayName="rept_cert_field_due_start" helpKey="rept_cert_help_due_start"
name="dueStartDate"
type="date" value="ref:dueStartDate"/>
 <Field displayName="rept_cert_field_due_end" helpKey="rept_cert_help_due_end" name-
e="dueEndDate"
type="date" value="ref:dueEndDate"/>
 <Field displayName="rept_cert_field_apps" helpKey="rept_cert_help_apps" multi="true"
name="applications" type="Application" value="ref:applications"/>
 <Field displayName="rept_cert_field_tags" helpKey="rept_cert_help_tags" multi="true"
name="tags"
type="Tag" value="ref:tags"/>
 <Field displayName="rept_cert_field_cert_group" helpKey="rept_cert_help_cert_group"
multi="true"
name="certificationGroups" type="CertificationGroup" value="ref:certificationGroups"/>
 <Field displayName="rept_cert_field_show_exclusions" helpKey="rept_cert_help_show_
exclusions"
name="exclusions" type="boolean" value="ref:exclusions"/>
 </Section>
</Form>

Form Models

SailPoint Forms 38

Form Models

Form models are used to simplify that process of passing values between the workflow variables and the form. Form
models enable the specification of a Map through which a set of variables can be handed to the form by the workflow.
The model is defined in the workflow (or predefined model is used), enabling the workflow and form to pass a col-
lection of variables at one time through the specified model. The form renderer is set up to use the model so form
fields can name the desired attribute directly without having to reference the model name as well.

Since actions in workflows often center around Identities, a map for the identity object, called IdentityModel, is prebuilt
in IdentityIQ. A workflow library method, getIdentityModel, can be called by a workflow step to create an IdentityModel
map to use in a subsequent step that renders a form. To create an empty map, call this method with no arguments. To
prepopulate the map with an identity's current values, specify an identity name or ID as an argument to the step. This
method is used with no arguments in the new self-service registration workflow to prepare to create a new identity
from the data the user enters on the form.

For an example of the simplification offered by a form model: A workflow form needs to display and permit the user to
edit 10 identity attributes. Without form binding, all 10 would have to be defined as individual business process vari-
ables and all 10 would have to be sent to and returned from the approval in the workflow. The form would also require
all 10 to be defined as form arguments. With a model, the whole Identity can be automatically stored in a single busi-
ness process variable with a single method call, only one variable (identityModel) must be passed to and returned
from the form, and no form arguments need to be defined at all.

Use these steps to use the IdentityModel in a workflow form:

1. Go to Setup > Business Process > Process Variables tab.

2. Define a process variable in the workflow (identityModel).

3. In an early step in the workflow, initialize and populate the identityModel by calling the getIdentityModel method
in the IdentityLibrary workflow library. Specify the identityModel process variable as the Result Variable for that
step.

To pass an identity name or ID to the method, specify it as an argument to the step (identityName or identityId).

4. In the approval that contains the form, create an argument called workItemFormBasePath and specify the iden-
tityModel process variable as its value. The form base path is understood by the form renderer and is auto-
matically applied to permit the form access to the map fields. This enables the passing of the model to and from
the form.

Form Models

SailPoint Forms 39

5. Reference the components of the identityModel in the form as though they were passed as individual variables,
for example, as "firstname," not as "identityModel.firstname."

Note: When a base path is specified as a form argument, the form renderer assumes all
fields on the form are accessed through that base path, so all attributes to be included in
the form or returned from it must be included in the model.

<Section>
<Field displayName="user_name" name="name" required="true" type="string"/>
<Field displayName="first_name" name="firstname" required="true" type="string"/>
<Field displayName="last_name" name="lastname" required="true" type="string"/>
<Field displayName="email" name="email" required="true" type="string"/>…

6. (Optional) To provision changes to the identity based on the form, call the buildPlanFromIdentityModel()
method in the Identity Library. This examines the versions of the model passed to the form and back from it,
identifies differences between them, and creates a provisioning plan to make the required changes.

Refer to the LCM Registration workflow, which ships with IdentityIQ Lifecycle Manager, for a full example of imple-
menting the identityModel.

No other models currently ship with the product, but custom models can be created through some manual coding in
the initialization stage.

1. Declare the model variable as a process variable (same as the identityModel), for example appModel.

2. Initialize the model manually, since no library method exists to populate custom models. Instead of a method
call in the initialization step, the step executes a script or rule written to populate the desired data into a
HashMap that is stored in the custommodel variable.

3. Specify the custom model variable as the workItemFormBasePath argument to the workflow's form step.

4. Reference components in the custommodel by name in the form. As with identityModel, no reference to the
base path should be specified in the form field names.

Identity Model Structure
The IdentityModel map delivered with IdentityIQ contains the following entries:

l all standard Identity attributes and all extended Identity attributes (most as strings; lists when multi-valued)

l detectedRoles (List)

l assignedRoles (List)

Form Models

SailPoint Forms 40

l manager (String name, rather than ID)

l info map which contains:

l manager map (includes ID, name, and displayName of Manager Identity)

l lastRefresh, lastLogin, and passwordExpiration dates

l isWorkgroup, managerStatus, correlated, and correlatedOverriden flag values

l assignedScope name and controlsAssignedScope flag value

l transformerOptions (map of primer identityName or identityId used to populate the IdentityModel)

l class (sailpoint.object.Identity)

l transformerClass (sailpoint.transformer.IdentityTransformer)

Accessing Identity Model Attributes
Any identity model attributes can be displayed on a form or set based on data entered in a form field by supplying the
model attribute name as the field name.

Access any single-valued attribute at the top level by specifying its name in the field's name attribute:

<Field displayName="first_name" name="firstname" type="string"/>

To display the contents of a multi-valued extended identity attribute, use the following syntax. Multi-value extended
identity attributes are shown in the identityModel as a list of string values.

<Field displayName="Cost Centers" multi="true" name="costcenter" type="string"/>

Access any nested attribute, for example, those with a map within the map, using dot notation:

<Field displayName="Manager ID" name="info.manager.id" type="string"/>

Note: Values in the info map should not be altered through the form, as they will not be updated
in the model; they are treated as read-only data that provides supplementary data for the cor-
responding top-level attribute, and they are automatically refreshed based on updates to that
top-level attribute.

Display the contents of an object list in the map, such as assignedRoles, detectedRoles, or workgroups, on a form by
creating it as a combo box. Do this by specifying the type as the correct object type and specifying multi="true":

<Field displayName="Detected Roles" filterString="type=='it'" multi="true" name-

Form Models

SailPoint Forms 41

="detectedRoles" type="iiq.object.Bundle"/>

<Field displayName="WorkGroups" filterString="workgroup == true" multi="true" name-
e="workgroups" type="Identity"/>

The application of a filterString to the workgroups list ensures that only workgroup identities display.

The links list contains a map for each link (account) held by the identity. Access attributes inside that list by referencing
the name of the desired link and using dot notation to traverse the map:

<Field displayName="App Owner" name="links['HR_Employees'].sys.nativeIdentity" type-
e="string"/>

In development and debugging, it can be helpful to examine the identityModel in XML or as a string representation to
clearly see its structure. The identityModel is visible in the workflowCase for any workflow where it is used and is prin-
ted to stdout if the trace variable is set to true for the workflow. It can be printed as a string from a workflow step with a
System.out.println(identityModel.toString()); statement.

Referencing a Form Model
Form models can be accessed by rules and scripts within workflows or forms within workflows using the $() parsing
tokens, for example, $(identityModel.name). When variables are referenced with this syntax, the
ScriptPreParser expands the short hand path references into the proper MapUtil.get() reference. This notation
can be used in scripts run from fields, variables, steps, transitions or step actions. The script can explicitly specify the
full path to the variable in the model, for example, $(identityModel.name), or it can reference the variable directly
when a modelBasePath has been defined, for example $(name).

Note: In order to set a basePath in a form, an argument named modelBasePath (defined as
Rule.MODEL_BASE_PATH) must be set declaring the path to be used for all the expanded vari-
ables in the form. For example, <Arg name='modelBasePath' value='identityModel'/>. The mod-
elBasePath does not have to be specified at the top level; for example, it can point to a list or
map within the top-level map such as <Arg name='modelBasePath' value-
='identityModel.links[AD]'/> (this is the map representing the user's AD account link).

Note: This $() notation can only be used for retrieving values from the model; it cannot be used
to set or change values in the model.

Syntax

Use the following syntax rules when writing references within the scripts:

Form Models

SailPoint Forms 42

l A dollar sign with parentheses [$()] is used as the parsing token to indicate what contents should be expan-
ded. For example, $(foo.bar).

l Double quotes are valid when enclosing spaces within the variable: $(foo."bar baz"). However an expan-
sion token within a quoted string is not processed: "$(not.expanded)"

l Brackets can be used within a variable to access elements in a list: $(foo.bar[baz=bingo].buzz)
$(foo.bar[baz="path with spaces"].buzz)

l When the modelBasePath is set to a sub-map or list within the model, the forward slash escape character (/)
can be used to jump to the root of the basePath. This escape character must be the first character after the
expansion token. If basePath is set to 'identityModel.links[AD]' and the desired reference is for
identityModel.firstname the variable would be written as $(/firstname) which would be converted
to IIQ.tools.MapUtil.get(identityModel, "firstname"). Otherwise $(firstname) is con-
verted to IIQ.tools.MapUtil.get(identityModel, "links[AD].firstname")

l If no basePath is set and the variable only contains a single word, no expansion occurs and a warning is written
to the log indicating a possible error condition.

Example Syntax

The following are all valid:

No base path:

l $(foo.bar)—> IIQ.tools.MapUtil.get(foo, "bar")

l $(foo."bar baz")—> IIQ.tools.MapUtil.get(foo, "\"bar baz\"")

l $(foo.bar[baz="path with spaces"].buzz)—> IIQ.tools.MapUtil.get(foo, "bar[baz-

z=\"path with spaces\"].buzz")

Base path = ‘foo’

l $(foo.bar) —> IIQ.tools.MapUtil.get(foo, "bar") (assuming basePath is set to 'foo'. This
respects the basePath and does not try to find a "foo" attribute within the "foo" map)

l $(bar)—> IIQ.tools.MapUtil.get(foo, "bar") (assuming basePath is set to 'foo')

Base path = ‘foo.bar[AD]’

l $(baz)—> IIQ.tools.MapUtil.get(foo, "bar[AD].baz") (assuming basePath is set to 'foo.bar
[AD]')

l $(/baz)—> IIQ.tools.MapUtil.get(foo, "baz") (assuming basePath is set to 'foo.bar[AD]')

	Forms
	Specifying Custom Forms
	Role / Application Provisioning Policies
	Identity Provisioning Policy
	Workflow Forms
	Report Forms

	Components of a Form Definition
	Form
	Attributes
	Buttons
	Sections
	Fields

	Working with the Form Editor
	Detail View
	Expandable Tree
	Edit Options

	Form Examples
	Application and Role Provisioning Policy
	Identity Provisioning Policy
	Workflow Form
	Report Forms

	Form Models
	Identity Model Structure
	Accessing Identity Model Attributes
	Referencing a Form Model

